Abstract

We present the design, implementation and validation of a swept-source optical coherence tomography (OCT) system for real-time imaging of the human middle ear in live patients. Our system consists of a highly phase-stable Vernier-tuned distributed Bragg-reflector laser along with a real-time processing engine implemented on a graphics processing unit. We use the system to demonstrate, for the first time in live subjects, real-time Doppler measurements of middle ear vibration in response to sound, video rate 2D B-mode imaging of the middle ear and 3D volumetric B-mode imaging. All measurements were performed non-invasively through the intact tympanic membrane demonstrating that the technology is readily translatable to the clinic.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT

Jesung Park, Jeffrey T. Cheng, Daniel Ferguson, Gopi Maguluri, Ernest W. Chang, Caitlin Clancy, Daniel J. Lee, and Nicusor Iftimia
Biomed. Opt. Express 7(2) 238-250 (2016)

Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography

Antoine Ramier, Jeffrey Tao Cheng, Michael E. Ravicz, John J. Rosowski, and Seok-Hyun Yun
Biomed. Opt. Express 9(11) 5489-5502 (2018)

Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system

Wihan Kim, Sangmin Kim, Shuning Huang, John S. Oghalai, and Brian E. Applegate
Biomed. Opt. Express 10(9) 4395-4410 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
    [Crossref]
  2. J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
    [Crossref]
  3. J. J. Rosowski, R. P. Mehta, and S. N. Merchant, “Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane,” Otol Neurotol 24, 165–175 (2003).
    [Crossref] [PubMed]
  4. S. E. Voss and J. B. Allen, “Measurement of acoustic impedance and reflectance in the human ear canal,” J. Acoust. Soc. Am. 95, 372–384 (1994).
    [Crossref] [PubMed]
  5. M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
    [Crossref] [PubMed]
  6. W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
    [Crossref]
  7. H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
    [Crossref]
  8. C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
    [Crossref]
  9. Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
    [PubMed]
  10. H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
    [Crossref] [PubMed]
  11. M. Pawlowski, S. Shrestha, J. Park, B. Applegate, J. Oghalai, and T. Tomilson, “Miniature, minimally invasive, tunable endoscope for investigation of the middle ear,” Biomed. Opt. Express 6, 2246–2257 (2015).
    [Crossref] [PubMed]
  12. S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J.Biomed. Opt. 11, 054014 (2006).
    [Crossref]
  13. H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).
  14. E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
    [Crossref]
  15. J. Park, E. Carbajal, X. Chen, J. Oghalai, and B. Applegate, “Phase-sensitive optical coherence tomography using a vernier-tuned distributed bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39, 6233–6236 (2014).
    [Crossref] [PubMed]
  16. J. Park, J. Cheng, D. Ferguson, G. Maguluri, E. Chang, C. Clancy, D. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive oct,” Biomed. Opt. Express 7, 238–250 (2016).
    [Crossref] [PubMed]
  17. D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
    [Crossref]
  18. M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
    [Crossref] [PubMed]
  19. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J.Biomed. Opt. 18, 026002 (2013).
    [Crossref]
  20. K. Zhang and J. U. Kang, “Graphics Processing Unit-Based Ultrahigh Speed Real-Time Fourier Domain Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18, 1270–1279 (2012).
    [Crossref]
  21. D. Hillmann, T. Bonin, C. Lurhs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Huttermann, “Common approach for compensation of axial motion artefacts in swept-source oct and dispersion in fourier-domain oct,” Opt. Express 20, 6761–6776 (2021).
    [Crossref]
  22. R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system,” Otol Neurotol 25, 423–435 (2004).
    [Crossref] [PubMed]
  23. W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).
  24. M. S. M. G. Vlaming and L. Feenstra, “Studies on the mechanics of the normal human middle ear,” Clinical Otolaryngology & Allied Sciences 11, 353–363 (2009).
    [Crossref]
  25. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
    [Crossref]
  26. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
    [Crossref] [PubMed]

2021 (1)

2016 (1)

2015 (3)

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

M. Pawlowski, S. Shrestha, J. Park, B. Applegate, J. Oghalai, and T. Tomilson, “Miniature, minimally invasive, tunable endoscope for investigation of the middle ear,” Biomed. Opt. Express 6, 2246–2257 (2015).
[Crossref] [PubMed]

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

2014 (5)

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
[Crossref] [PubMed]

J. Park, E. Carbajal, X. Chen, J. Oghalai, and B. Applegate, “Phase-sensitive optical coherence tomography using a vernier-tuned distributed bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39, 6233–6236 (2014).
[Crossref] [PubMed]

W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

2013 (3)

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J.Biomed. Opt. 18, 026002 (2013).
[Crossref]

2012 (2)

K. Zhang and J. U. Kang, “Graphics Processing Unit-Based Ultrahigh Speed Real-Time Fourier Domain Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18, 1270–1279 (2012).
[Crossref]

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

2009 (3)

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

M. S. M. G. Vlaming and L. Feenstra, “Studies on the mechanics of the normal human middle ear,” Clinical Otolaryngology & Allied Sciences 11, 353–363 (2009).
[Crossref]

2008 (1)

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

2006 (1)

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J.Biomed. Opt. 11, 054014 (2006).
[Crossref]

2005 (1)

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

2004 (1)

R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system,” Otol Neurotol 25, 423–435 (2004).
[Crossref] [PubMed]

2003 (2)

J. J. Rosowski, R. P. Mehta, and S. N. Merchant, “Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane,” Otol Neurotol 24, 165–175 (2003).
[Crossref] [PubMed]

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

2001 (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
[Crossref]

1994 (1)

S. E. Voss and J. B. Allen, “Measurement of acoustic impedance and reflectance in the human ear canal,” J. Acoust. Soc. Am. 95, 372–384 (1994).
[Crossref] [PubMed]

Adamson, R.

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

Adamson, R. B.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Allen, J. B.

S. E. Voss and J. B. Allen, “Measurement of acoustic impedance and reflectance in the human ear canal,” J. Acoust. Soc. Am. 95, 372–384 (1994).
[Crossref] [PubMed]

Applegate, B.

Bance, M.

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

Bance, M. L.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Baumann, B.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Bonesi, M.

Bonin, T.

Boppart, S.

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Boschert, P.

Brezinski, M. E.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
[Crossref]

Brown, J.

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

Brown, J. A.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Cable, A. E.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Carbajal, E.

Chang, E.

Chang, E. W.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Chappell, R.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Chen, X.

Chen, Z.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Cheng, J.

Cheng, J. T.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Chien, W.

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

Choi, W.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Choudhury, N.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Clancy, C.

Crawford, M.

Cruickshanks, K. J.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Dalton, D. S.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Day, J. E.

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

de LaRochefoucauld, O.

W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).

Decraemer, W. F.

W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).

Djalilian, H. R.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Dormer, K. J.

R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system,” Otol Neurotol 25, 423–435 (2004).
[Crossref] [PubMed]

Drexler, W.

Duker, J. S.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Ensher, J.

Feeney, M. P.

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

Feenstra, L.

M. S. M. G. Vlaming and L. Feenstra, “Studies on the mechanics of the normal human middle ear,” Clinical Otolaryngology & Allied Sciences 11, 353–363 (2009).
[Crossref]

Ferguson, D.

Franke, G.

Freeman, D. M.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J.Biomed. Opt. 11, 054014 (2006).
[Crossref]

Fujimoto, J. G.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
[Crossref]

Funnell, W. R. J.

W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).

Gan, R. Z.

R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system,” Otol Neurotol 25, 423–435 (2004).
[Crossref] [PubMed]

Garinis, A. C.

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

Grulkowski, I.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Hagen-Eggert, M.

Hillmann, D.

Hong, S. S.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J.Biomed. Opt. 11, 054014 (2006).
[Crossref]

Hoover, E.

Huang, D.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Hubler, Z.

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Huttermann, G.

Iftimia, N.

Jacques, S. L.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Jayaraman, V.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Jian, Y.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J.Biomed. Opt. 18, 026002 (2013).
[Crossref]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

Kang, J. U.

K. Zhang and J. U. Kang, “Graphics Processing Unit-Based Ultrahigh Speed Real-Time Fourier Domain Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18, 1270–1279 (2012).
[Crossref]

Keefe, D. H.

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

Klein, B. E. K.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Klein, R.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Kobler, J. B.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Koch, P.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

Lee, D.

Leitgeb, R.

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

Liu, J. J.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

Lockwood, G. R.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Lu, C. D.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Lurhs, C.

MacDougall, D.

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

Maguluri, G.

Mehta, R. P.

J. J. Rosowski, R. P. Mehta, and S. N. Merchant, “Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane,” Otol Neurotol 24, 165–175 (2003).
[Crossref] [PubMed]

Merchant, S. N.

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

J. J. Rosowski, R. P. Mehta, and S. N. Merchant, “Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane,” Otol Neurotol 24, 165–175 (2003).
[Crossref] [PubMed]

Minneman, M.

Monroy, G.

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Nakajima, H. H.

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

Nguyen-Huynh, A.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Nolan, R.

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Nondahl, D. M.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Nuttall, A. L.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Oghalai, J.

Olson, E. S.

W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).

Park, J.

Pawlowski, M.

Peake, W. T.

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

Pennings, R. J.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Pitris, C.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
[Crossref]

Potsaid, B.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Rainsbury, J.

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

Rauch, S. D.

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

Ravicz, M. E.

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

Ridgway, J.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Röösli, C.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Rosowski, J. J.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

J. J. Rosowski, R. P. Mehta, and S. N. Merchant, “Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane,” Otol Neurotol 24, 165–175 (2003).
[Crossref] [PubMed]

Sarunic, M. V.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J.Biomed. Opt. 18, 026002 (2013).
[Crossref]

Sattmann, H.

Saunders, K. T.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
[Crossref]

Seixas, N.

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

Sepehr, A.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Shelton, R.

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Shemonski, N.

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Shrestha, S.

Smullen, J.

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

Stover, B.

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

Subhash, H. M.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Tam, M.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Tomilson, T.

Torbatian, Z.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Tweed, T. S.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

Van Wijhe, R.

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Vlaming, M. S. M. G.

M. S. M. G. Vlaming and L. Feenstra, “Studies on the mechanics of the normal human middle ear,” Clinical Otolaryngology & Allied Sciences 11, 353–363 (2009).
[Crossref]

Voss, S. E.

S. E. Voss and J. B. Allen, “Measurement of acoustic impedance and reflectance in the human ear canal,” J. Acoust. Soc. Am. 95, 372–384 (1994).
[Crossref] [PubMed]

Wang, R. K.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Wiley, T. L.

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Wong, B. J.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Wong, K.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J.Biomed. Opt. 18, 026002 (2013).
[Crossref]

Wood, M. W.

R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system,” Otol Neurotol 25, 423–435 (2004).
[Crossref] [PubMed]

Yun, S. H.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Zabihian, B.

Zhang, K.

K. Zhang and J. U. Kang, “Graphics Processing Unit-Based Ultrahigh Speed Real-Time Fourier Domain Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18, 1270–1279 (2012).
[Crossref]

Arch Otolaryngol (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch Otolaryngol 127, 637–642 (2001).
[Crossref]

Archives of Otolaryngology–Head & Neck Surgery (1)

K. J. Cruickshanks, T. S. Tweed, T. L. Wiley, B. E. K. Klein, R. Klein, R. Chappell, D. M. Nondahl, and D. S. Dalton, “The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study,” Archives of Otolaryngology–Head & Neck Surgery 129, 1041–1046 (2003).
[Crossref]

Biomed. Opt. Express (2)

Clinical Otolaryngology & Allied Sciences (1)

M. S. M. G. Vlaming and L. Feenstra, “Studies on the mechanics of the normal human middle ear,” Clinical Otolaryngology & Allied Sciences 11, 353–363 (2009).
[Crossref]

Hearing Res. (1)

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3d imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hearing Res. 304, 49–56 (2013).
[Crossref]

Hearing Research (2)

W. Chien, J. J. Rosowski, M. E. Ravicz, S. D. Rauch, J. Smullen, and S. N. Merchant, “Measurements of stapes velocity in live human ears,” Hearing Research 249, 54–61 (2009).
[Crossref]

H. H. Nakajima, M. E. Ravicz, S. N. Merchant, W. T. Peake, and J. J. Rosowski, “Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain,” Hearing Research 204, 60–77 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Zhang and J. U. Kang, “Graphics Processing Unit-Based Ultrahigh Speed Real-Time Fourier Domain Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18, 1270–1279 (2012).
[Crossref]

J. Acoust. Soc. Am. (1)

S. E. Voss and J. B. Allen, “Measurement of acoustic impedance and reflectance in the human ear canal,” J. Acoust. Soc. Am. 95, 372–384 (1994).
[Crossref] [PubMed]

J.Biomed. Opt. (5)

D. MacDougall, J. Rainsbury, J. Brown, M. Bance, and R. Adamson, “Optical coherence tomography system requirements for clinical diagnostic middle ear imaging,” J.Biomed. Opt. 20, 56008 (2015).
[Crossref]

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J.Biomed. Opt. 11, 054014 (2006).
[Crossref]

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J.Biomed. Opt. 17, 0605051 (2012).

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J.Biomed. Opt. 18, 026002 (2013).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J.Biomed. Opt. 19, 071412 (2014).
[Crossref]

Journal of the American Academy of Audiology (1)

M. P. Feeney, B. Stover, D. H. Keefe, A. C. Garinis, J. E. Day, and N. Seixas, “Sources of variability in wideband energy reflectance measurements in adults,” Journal of the American Academy of Audiology 25, 449–461 (2014).
[Crossref] [PubMed]

Journal of the Association for Research in Otolaryngology: JARO (1)

W. F. Decraemer, O. de LaRochefoucauld, W. R. J. Funnell, and E. S. Olson, “Three-dimensional vibration of the malleus and incus in the living gerbil,” Journal of the Association for Research in Otolaryngology: JARO 15, 483–510 (2014).

Opt. Express (2)

Opt. Lett. (1)

Optics Letters (1)

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Optics Letters 38, 338 (2013).
[Crossref] [PubMed]

Otol Neurotol (3)

R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system,” Otol Neurotol 25, 423–435 (2004).
[Crossref] [PubMed]

J. J. Rosowski, R. P. Mehta, and S. N. Merchant, “Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane,” Otol Neurotol 24, 165–175 (2003).
[Crossref] [PubMed]

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol Neurotol 29, 1091–1094 (2008).
[Crossref] [PubMed]

Quant Imaging Med Surg. (1)

Z. Hubler, N. Shemonski, R. Shelton, G. Monroy, R. Nolan, and S. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant Imaging Med Surg. 5, 69–77 (2015).
[PubMed]

Ultrasound in medicine & biology (1)

J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance, “High-frequency ex vivo ultrasound imaging of the auditory system,” Ultrasound in medicine & biology 35, 1899–1907 (2009).
[Crossref]

Supplementary Material (5)

NameDescription
» Visualization 1: AVI (1505 KB)      3D volume render of Doppler vibrogrphy, ex vivo
» Visualization 2: AVI (8003 KB)      3D animation of middle ear vibrational response, ex vivo
» Visualization 3: AVI (15813 KB)      2D realtime B-mode imaging of normal middle ear, in vivo
» Visualization 4: AVI (11546 KB)      3D volume render of normal middle ear, in vivo
» Visualization 5: AVI (3578 KB)      3D volume render of surgically repaired middle ear with a stapes piston prosthesis, in vivo

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of the SS-OCT system designed for real-time human middle ear imaging in vivo. FPGA: field programmable gate array, DAC: digital-to-analog converter, ADC: analog-to-digital converter, LAS: wavelength swept laser, TIA: trans-impedance amplifier, V: voltage amplifier, SPK: speaker, GV: galvanometer mirror, BS: fiber beam splitter, PC: personal computer, GPU: graphics processing unit.
Fig. 2
Fig. 2 Conceptual diagram describing the memory and grid structure of the CUDA streams used for A) pre- and B) post-DFT processing the raw unstitched interferometric data. DVV: data valid vector describing the pattern of invalid data to be ignored in the spectral interferograms, NORM: complex normalization vector used for application of ripple-rejection, dispersion compensation and windowing prior to discrete Fourier-transformation.
Fig. 3
Fig. 3 A) Optical layout B) Closeup of the middle ear OCT scanning microscope used for imaging down the ear canal through a 4 mm otoscopic speculum and mounted to surgical microscope arm. C) Complete in-clinic, real-time imaging system mounted to an articulating arm. Units are in mm.
Fig. 4
Fig. 4 Ex vivo, Doppler-vibrographic response of a cadaveric right ear at an acoustic frequency of 515Hz showing a 2D view of the ear’s measured peak-to-peak vibrational response A) without acoustic stimulus, and B) with stimulus applied at 100dBSPL. C) and D) show the color-mapped vibrational response to stimulus in 3D before and after digital removal of the TM (see Visualization 1). Visualization 2 uses the same data to animate the middle ear’s vibrational response. Tympanic membrane (TM), malleus (M), incus (IN), cochlear promontory (CP).
Fig. 5
Fig. 5 In vivo, real-time functional imaging of a normal left ear’s response at 1030Hz. A) Shows a 1 × 1cm2 2D cross-section of the middle ear in the transverse plane. Visualization 3 shows the macroscopic changes to the ear anatomy during a Valsalva maneuver. B) Shows a 1 × 1 × 1cm3 3D volume render of the middle ear as seen from the perspective of the ear canal with the TM digitally removed (see Visualization 4), and C) from an inferior-posterior perspective with the TM in-place showing the axis of Doppler measurement along the yellow line passing through the incus at the stapedius tendon. Functional measurements of the TM and incus’ peak-to-peak vibrational response at 1kHz are shown in D) with a 100dBSPL tone applied to the ear and E) without stimulus. F) A plot of displacement response versus sound pressure level showing excellent linearity from 80dBSPL to 100dBSPL. Error bars represent ± one standard deviation of the response over the pixels along the axial length of the incus. Tympanic membrane (TM), malleus (M), incus (IN), incudo-stapedial joint (IS), stapedius tendon (ST), chorda tympani nerve (CT), cochlear promontory (CP), round-window niche (RW).
Fig. 6
Fig. 6 A) Illustration of the placement of a stapes piston prosthesis during stapedotomy surgery (taken from “Practical Otology for the Otolaryngologist” by Seilesh Babu, 2013) B) In vivo 3D render of patient’s middle ear containing a stapes piston prosthethis, clearly showing the crimp of the piston around the long process of the incus (see Visualization 5). C) and D) show real-time 2D B-mode images comparing the appearance of normal incus bone, characterized by gradual signal drop-off and multiple scattering, to the appearance of the titanium prosthesis, characterized by a single strong surface reflection. Tympanic membrane (TM), incus (IN), stapes piston prosthesis (SP), cochlear promontory (CP), malleus (M)

Tables (1)

Tables Icon

Table 1 Summary of current system capabilities

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y , t , f a ) = 4 π A ( x , y , f a ) λ 0 sin [ 2 π f a t + ϕ ( x , y , f a ) ] + ψ 0 ( x , y )
i = ( n + x N + w X N )
Δ ϕ = 2 π f a T s
ϕ i = 2 π f a i T s
ϕ w x n = 2 π f a ( n + x N + w X N ) T s
ψ w x y n = 4 π A x y ( f a ) λ 0 sin [ 2 π f a f s ( n + x N + w X N ) + ϕ x y ( f a ) ] + ψ 0 , x y
A x y ( f a ) e j ϕ x y ( f a ) = λ 0 4 π 1 N W w = 0 W 1 n = 0 N 1 e j 2 π ( n + x N + w X N ) f a T s ψ w x y n

Metrics