Abstract

Change of muscle tissue oxygen saturation (StO2), due to exercise, measured by near infrared spectroscopy (NIRS) is known to be lower for subjects with higher adipose tissue thickness. This is most likely not physiological but caused by the superficial fat and adipose tissue. In this paper we assessed, in vitro, the influence of adipose tissue thickness on muscle StO2, measured by NIRS oximeters. We measured StO2 of a liquid phantom by 3 continuous wave (CW) oximeters (Sensmart Model X-100 Universal Oximetry System, INVOS 5100C, and OxyPrem v1.3), as well as a frequency-domain oximeter, OxiplexTS, through superficial layers with 4 different thicknesses. Later, we employed the results to calibrate OxyPrem v1.3 for adipose tissue thickness in-vivo.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf
Biomed. Opt. Express 9(1) 86-101 (2018)

Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

Simon Hyttel-Sorensen, Stefan Kleiser, Martin Wolf, and Gorm Greisen
Biomed. Opt. Express 4(9) 1662-1672 (2013)

Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

Simon Hyttel-Sorensen, Line C. Sorensen, Joan Riera, and Gorm Greisen
Biomed. Opt. Express 2(11) 3047-3057 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
    [Crossref]
  2. T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
    [Crossref]
  3. R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
    [Crossref]
  4. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
    [Crossref]
  5. M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
    [Crossref]
  6. J. B. Alexandre Limma, “Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients,” Rev. Bras. Ter. Intensiva 23, 341–351 (2011).
  7. M. Meissner, “Lower extremity venous anatomy,” Semin. Intervent. Radiol. 22, 147–156 (2005). Cited By 25.
    [Crossref] [PubMed]
  8. A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Bruhl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
    [Crossref] [PubMed]
  9. M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [Crossref]
  10. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
    [Crossref]
  11. C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
    [Crossref] [PubMed]
  12. S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
    [Crossref] [PubMed]
  13. J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on VIS-NIR spectroscopy,” Proc. SPIE 8591, 859105 (2013).
    [Crossref]
  14. S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
    [Crossref] [PubMed]
  15. U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
    [Crossref] [PubMed]
  16. M. S. Patterson, E. K. Osei, S. Andersson-Engels, and B. C. Wilson, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [Crossref] [PubMed]
  17. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin determination and application (VSP: Utrecht, 2000).
  18. C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
    [Crossref] [PubMed]
  19. T. A. Bauer, E. P. Brass, and W. R. Hiatt, “Impaired muscle oxygen use at onset of exercise in peripheral arterial disease,” J. Vasc. Surg. 40, 488–493 (2004).
    [Crossref] [PubMed]
  20. A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
    [Crossref] [PubMed]
  21. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
    [Crossref]
  22. L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
    [Crossref] [PubMed]
  23. C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
    [Crossref] [PubMed]
  24. M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
    [Crossref] [PubMed]
  25. L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
    [Crossref] [PubMed]
  26. T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
    [Crossref]
  27. T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth – a comparison of INVOS and fore-sight near-infrared spectroscopy oximeters,” Acta. Paediatr. 103, 488–493 (2014).
    [Crossref] [PubMed]
  28. A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
    [Crossref] [PubMed]
  29. S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two NIRS oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
    [Crossref] [PubMed]
  30. G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
    [Crossref] [PubMed]
  31. C. G. D. Brook, “Composition of human adipose tissue from deep and subcutaneous sites,” Br. J. Nutr. 25, 377–380 (1971).
    [Crossref] [PubMed]
  32. M. L. Davis and T. J. Barstow, “Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy,” Respir. Physiol. Neurobiol. 186, 180–187 (2013).
    [Crossref] [PubMed]
  33. D. J. Marcinek, C. E. Amara, K. Matz, K. E. Conley, and K. A. Schenkman, “Wavelength shift analysis: A simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra,” Appl. Spectrosc. 61, 665–669 (2007).
    [Crossref] [PubMed]
  34. R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand. 168, 615–622 (2000).
    [Crossref] [PubMed]

2016 (2)

R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
[Crossref]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

2015 (1)

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

2014 (4)

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Bruhl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two NIRS oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth – a comparison of INVOS and fore-sight near-infrared spectroscopy oximeters,” Acta. Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

2013 (5)

M. L. Davis and T. J. Barstow, “Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy,” Respir. Physiol. Neurobiol. 186, 180–187 (2013).
[Crossref] [PubMed]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on VIS-NIR spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

2012 (1)

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

2011 (3)

J. B. Alexandre Limma, “Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients,” Rev. Bras. Ter. Intensiva 23, 341–351 (2011).

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

2007 (2)

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

D. J. Marcinek, C. E. Amara, K. Matz, K. E. Conley, and K. A. Schenkman, “Wavelength shift analysis: A simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra,” Appl. Spectrosc. 61, 665–669 (2007).
[Crossref] [PubMed]

2006 (1)

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

2005 (1)

M. Meissner, “Lower extremity venous anatomy,” Semin. Intervent. Radiol. 22, 147–156 (2005). Cited By 25.
[Crossref] [PubMed]

2004 (1)

T. A. Bauer, E. P. Brass, and W. R. Hiatt, “Impaired muscle oxygen use at onset of exercise in peripheral arterial disease,” J. Vasc. Surg. 40, 488–493 (2004).
[Crossref] [PubMed]

2003 (3)

A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
[Crossref] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

2000 (1)

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand. 168, 615–622 (2000).
[Crossref] [PubMed]

1999 (1)

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

1998 (1)

1995 (2)

1994 (2)

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

1993 (1)

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

1971 (1)

C. G. D. Brook, “Composition of human adipose tissue from deep and subcutaneous sites,” Br. J. Nutr. 25, 377–380 (1971).
[Crossref] [PubMed]

Adamczak, A.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Alexandre Limma, J. B.

J. B. Alexandre Limma, “Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients,” Rev. Bras. Ter. Intensiva 23, 341–351 (2011).

Amara, C. E.

Andersson-Engels, S.

Andresen, B.

Baenziger, O.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Baerts, W.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Barstow, T. J.

M. L. Davis and T. J. Barstow, “Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy,” Respir. Physiol. Neurobiol. 186, 180–187 (2013).
[Crossref] [PubMed]

Bauer, T. A.

T. A. Bauer, E. P. Brass, and W. R. Hiatt, “Impaired muscle oxygen use at onset of exercise in peripheral arterial disease,” J. Vasc. Surg. 40, 488–493 (2004).
[Crossref] [PubMed]

Biallas, M.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Birmingham, C.

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

Boezeman, R. P.

R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
[Crossref]

Boushel, R.

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand. 168, 615–622 (2000).
[Crossref] [PubMed]

Bouzat, P.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Brass, E. P.

T. A. Bauer, E. P. Brass, and W. R. Hiatt, “Impaired muscle oxygen use at onset of exercise in peripheral arterial disease,” J. Vasc. Surg. 40, 488–493 (2004).
[Crossref] [PubMed]

Brook, C. G. D.

C. G. D. Brook, “Composition of human adipose tissue from deep and subcutaneous sites,” Br. J. Nutr. 25, 377–380 (1971).
[Crossref] [PubMed]

Bruhl, R.

Brun, J.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Bucher, H. U.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin determination and application (VSP: Utrecht, 2000).

Chance, B.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Choi, J. H.

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Chojnacka, K.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Comerota, A. J.

A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
[Crossref] [PubMed]

Conley, K. E.

Davis, M. L.

M. L. Davis and T. J. Barstow, “Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy,” Respir. Physiol. Neurobiol. 186, 180–187 (2013).
[Crossref] [PubMed]

de Vries, J.-P. P.

R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
[Crossref]

Delpy, D. T.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

Dix, L. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Dullenkopf, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Duranteau, J.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Duret, J.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Ewald, H.

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on VIS-NIR spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Fabiani, M.

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

Fantini, S.

Fauchère, J.-C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Firbank, M.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

Franceschini, M. A.

Frey, B.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Gadzinowski, J.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Gerber, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Goldner, E.

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

Gratton, E.

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

Gratton, G.

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

Greisen, G.

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two NIRS oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth – a comparison of INVOS and fore-sight near-infrared spectroscopy oximeters,” Acta. Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

Hamaoka, T.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

Harrois, A.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Hattinger-Jürgenssen, E.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Hessel, T. W.

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth – a comparison of INVOS and fore-sight near-infrared spectroscopy oximeters,” Acta. Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two NIRS oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

Hiatt, W. R.

T. A. Bauer, E. P. Brass, and W. R. Hiatt, “Impaired muscle oxygen use at onset of exercise in peripheral arterial disease,” J. Vasc. Surg. 40, 488–493 (2004).
[Crossref] [PubMed]

Hofstätter, E.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Hyttel-Sorensen, S.

Jaff, M.

A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
[Crossref] [PubMed]

Jelzow, A.

Jenny, C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Jopek, A.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Karpinski, U.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Kelly, P.

A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
[Crossref] [PubMed]

Kirilina, E.

Kleiser, S.

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Kornacka, A.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Kraitl, J.

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on VIS-NIR spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Kurth, C. D.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

la Cour, A.

Lemmers, P. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Liu, H.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Macdonald, R.

Maier, J. S.

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

Mantulin, W. W.

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

Marcinek, D. J.

Mathieson, J.

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

Matz, K.

McCargar, L.

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

McCully, K. K.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

Meissner, M.

M. Meissner, “Lower extremity venous anatomy,” Semin. Intervent. Radiol. 22, 147–156 (2005). Cited By 25.
[Crossref] [PubMed]

Michalos, A.

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Minnich, B.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Moczko, J.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Moll, F. L.

R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
[Crossref]

Müller, W.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Nasseri, N.

Naulaers, G.

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

Orphanidou, C.

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

Osei, E. K.

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Patterson, M. S.

Paunescu, L.

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Paunescu, L. A.

Payen, J.-F.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Piantadosi, C. A.

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand. 168, 615–622 (2000).
[Crossref] [PubMed]

Pichler, G.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Pocivalnik, M.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Pottecher, J.

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

Quaresima, V.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

Safonova, L. P.

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Schenkman, K. A.

Schneider, A.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Sorensen, L. C.

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Szczapa, T.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Tachtsidis, I.

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Tax, N.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Thayer, W. S.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Throm, R. C.

A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
[Crossref] [PubMed]

Timm, U.

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on VIS-NIR spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Trajkovic, I.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Unlu, C.

R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
[Crossref]

Urlesberger, B.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

van Assendelft, O. W.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin determination and application (VSP: Utrecht, 2000).

van Bel, F.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

Wabnitz, H.

Wald, M.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Weindling, M.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Weiss, M.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Weisser, C.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Wilson, B. C.

Wolf, M.

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Wolf, U.

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Wróblewska, K.

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Yamamoto, K.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin determination and application (VSP: Utrecht, 2000).

Zotter, H.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Acta Paediatr. (1)

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Acta Physiol. Scand. (1)

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand. 168, 615–622 (2000).
[Crossref] [PubMed]

Acta. Paediatr. (1)

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth – a comparison of INVOS and fore-sight near-infrared spectroscopy oximeters,” Acta. Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

U. Wolf, M. Wolf, J. H. Choi, L. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol. 510, 225–230 (2003).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Biomed. Opt. Express (4)

Br. J. Nutr. (1)

C. G. D. Brook, “Composition of human adipose tissue from deep and subcutaneous sites,” Br. J. Nutr. 25, 377–380 (1971).
[Crossref] [PubMed]

Crit. Care (1)

J. Duret, J. Pottecher, P. Bouzat, J. Brun, A. Harrois, J.-F. Payen, and J. Duranteau, “Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation,” Crit. Care 19, 1–7 (2015).
[Crossref]

J Near Infrared Spec. (1)

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

J. Am. Diet. Assoc. (1)

C. Orphanidou, L. McCargar, C. Birmingham, J. Mathieson, and E. Goldner, “Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography,” J. Am. Diet. Assoc. 94, 855–858 (1994).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12, 062105 (2007).
[Crossref]

T. Szczapa, U. Karpiński, J. Moczko, M. Weindling, A. Kornacka, K. Wróblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

J. Vasc. Surg. (2)

T. A. Bauer, E. P. Brass, and W. R. Hiatt, “Impaired muscle oxygen use at onset of exercise in peripheral arterial disease,” J. Vasc. Surg. 40, 488–493 (2004).
[Crossref] [PubMed]

A. J. Comerota, R. C. Throm, P. Kelly, and M. Jaff, “Tissue (muscle) oxygen saturation (sto2): A new measure of symptomatic lower-extremity arterial disease,” J. Vasc. Surg. 38, 724–729 (2003).
[Crossref] [PubMed]

Microvasc. Res. (1)

R. P. Boezeman, F. L. Moll, C. Unlu, and J.-P. P. de Vries, “Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease,” Microvasc. Res. 104, 11–22 (2016).
[Crossref]

Pediatr. Anesth. (1)

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Pediatr. Res. (1)

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

Proc. SPIE (2)

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on VIS-NIR spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Psychophysiology (1)

G. Gratton, J. S. Maier, M. Fabiani, W. W. Mantulin, and E. Gratton, “Feasibility of intracranial near-infrared optical scanning,” Psychophysiology 31, 211–215 (1994).
[Crossref] [PubMed]

Respir. Physiol. Neurobiol. (1)

M. L. Davis and T. J. Barstow, “Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy,” Respir. Physiol. Neurobiol. 186, 180–187 (2013).
[Crossref] [PubMed]

Rev. Bras. Ter. Intensiva (1)

J. B. Alexandre Limma, “Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients,” Rev. Bras. Ter. Intensiva 23, 341–351 (2011).

Semin. Intervent. Radiol. (1)

M. Meissner, “Lower extremity venous anatomy,” Semin. Intervent. Radiol. 22, 147–156 (2005). Cited By 25.
[Crossref] [PubMed]

Other (1)

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin determination and application (VSP: Utrecht, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The experimental set-up is shown schematically. The cap of the container effectively prevented oxygen and light entering into the phantom. NIRS sensors were placed in the middle of each window.
Fig. 2
Fig. 2 Absorption spectrum of hemoglobin based on its oxygenation state. Data from [17].
Fig. 3
Fig. 3 Time-series of 4 cycles of oxygenation measurement by OxiplexTS, OxyPrem v1.3, INVOS adult, and Nonin adult at 2.5 mm, 5 mm, 9 mm, and 16 mm window thickness.
Fig. 4
Fig. 4 The StO2 values obtained by NIRS oximeters vs. reference at different window thicknesses: (a) Nonin adult vs. OxyVLS, (b) OxyPrem v1.3 vs. OxyVLS, (c) OxiplexTS vs. OxyVLS, (d) INVOS adult vs. OxyVLS.
Fig. 5
Fig. 5 Relative sensitivity of NIRS oximeters measured on superficial layers with different thicknesses and the corresponding trend lines: (a) Nonin adult: y = 411.2 x 2.724 1 + 411.2 x 2.724 , r a d j 2 = 1.000 , the gray point was excluded from fitting because of implausibility, (b) OxyPrem v1.3: y = 1732 x 3.346 1 + 1732 x 3.346 , r a d j 2 = 0.9997 , (c) OxiplexTS: y = 260.2 x 2.188 1 + 260.2 x 2.188 , r a d j 2 = 0.9999 , (d) INVOS adult: y = 449.1 x 2.767 1 + 449.1 x 2.767 , r a d j 2 = 1.000 .
Fig. 6
Fig. 6 Trend of the relative sensitivity of oximeters vs. w i n d o w t h i c k n e s s a v e r a g e p e n e t r a t i o n d e p t h . The trend lines follow the equations y = 0.7052 x 2.977 1 + 0.7052 x 2.977 , r a d j 2 = 0.9945 (CW oximeters) and y = 1.5174 x 2.188 1 + 1.517 x 2.188 , r a d j 2 = 0.9999 (FD oximeter). The gray point was excluded from fitting because of implausibility.
Fig. 7
Fig. 7 StO2 measured by OxyPrem v1.3 on extensor carpi ulnaris (ATT = 3.6mm) as well as the brachioradialis (ATT = 4.65mm) muscle, before and after calibration. The vertical line indicates the start of an arterial occlusion at 250mmHg. S t O 2 , 3.6 m m , c a l i b r a t e d = S t O 2 , 3.6 m m , u n c a l i b r a t e d 0.03 0.96 and S t O 2 , 4.65 m m , c a l i b r a t e d = S t O 2 , 4.65 m m , u n c a l i b r a t e d 0.07 0.91.

Tables (7)

Tables Icon

Table 1 Optical properties of the deoxygenated liquid phantom and the windows.

Tables Icon

Table 2 pH, temperature, and pCO2 range in 4 cycles of measurement.

Tables Icon

Table 3 Technical information on NIRS oximeters, INVOS adult, Nonin adult, OxyPrem v1.3, OxiplexTS.

Tables Icon

Table 4 Sensor placememt during 4 different cycles of oxygenation-deoxygenation.

Tables Icon

Table 5 Adipose tissue thickness on different body regions of the subject who was recruited for the in-vivo measurement.

Tables Icon

Table 6 StO2 value measured by different oximeters on a solid block phantom with the same optical properties as those of the windows (StO2 superficial).

Tables Icon

Table 7 Maximum and RMS error of StO2 measurement for uncalibrated and calibrated in-vitro data, measured by OxyPrem v1.3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A P D = 1 2 [ < S D S > ( 3 μ a μ s ) 1 2 ] 1 2
S t O 2 , c a l i b r a t e d = S t O 2 , n o t c a l i b r a t e d + ( R S 1 ) S t O 2 s u p e r f i c i a l R S
e R M S = 1 n t = 1 n ( S t O 2 , c a l i b r a t e d S t O 2 , 2.5 m m ) 2

Metrics