Abstract

Intravascular photoacoustic (IVPA) imaging has the potential to characterize lipid-rich structures based on the optical absorption contrast of tissues. In this study, we explore frequency domain photoacoustics (FDPA) for intravascular applications. The system employed an intensity-modulated continuous wave (CW) laser diode, delivering 1W over an intensity modulated chirp frequency of 4-12MHz. We demonstrated the feasibility of this approach on an agar vessel phantom with graphite and lipid targets, imaged using a planar acoustic transducer co-aligned with an optical fibre, allowing for the co-registration of IVUS and FDPA images. A frequency domain correlation method was used for signal processing and image reconstruction. The graphite and lipid targets show an increase in FDPA signal as compared to the background of 21dB and 16dB, respectively. Use of compact CW laser diodes may provide a valuable alternative for the development of photoacoustic intravascular devices instead of pulsed laser systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging

Krista Jansen, Min Wu, Antonius F. W. van der Steen, and Gijs van Soest
Opt. Express 21(18) 21472-21484 (2013)

Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second

Min Wu, Geert Springeling, Matija Lovrak, Frits Mastik, Sophinese Iskander-Rizk, Tianshi Wang, Heleen M. M. van Beusekom, A. F. W. van der Steen, and Gijs Van Soest
Biomed. Opt. Express 8(2) 943-953 (2017)

Thermal intravascular photoacoustic imaging

Bo Wang and Stanislav Emelianov
Biomed. Opt. Express 2(11) 3072-3078 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
    [Crossref] [PubMed]
  2. N. D. Gladkova, E. V Gubarkova, E. G. Sharabrin, V. I. Stelmashok, and A. E. Beimanov, “The potential and limitations of intravascular optical coherence tomography,” Sovrem. Tehnol. v Med. 2012, 128–141 (2012).
  3. A. Maehara, G. S. Mintz, and N. J. Weissman, “Advances in intravascular imaging,” Circ. Cardiovasc. Interv. 2(5), 482–490 (2009).
    [Crossref] [PubMed]
  4. J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
    [Crossref] [PubMed]
  5. S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
    [Crossref] [PubMed]
  6. J. E. Muller, N. J. Weissman, and E. M. Tuzcu, “The year in intracoronary imaging,” JACC Cardiovasc. Imaging 3(8), 881–891 (2010).
    [Crossref] [PubMed]
  7. S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
    [Crossref] [PubMed]
  8. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
    [Crossref] [PubMed]
  9. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
    [Crossref] [PubMed]
  10. B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
    [Crossref] [PubMed]
  11. M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
    [Crossref] [PubMed]
  12. X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
    [Crossref] [PubMed]
  13. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
    [Crossref] [PubMed]
  14. J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
    [Crossref] [PubMed]
  15. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
    [Crossref] [PubMed]
  16. Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
    [Crossref] [PubMed]
  17. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
    [Crossref] [PubMed]
  18. S. A. Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements,” J. Biomed. Opt. 14(4), 044025 (2009).
    [Crossref] [PubMed]
  19. S. Telenkov, R. Alwi, A. Mandelis, and A. Worthington, “Frequency-domain photoacoustic phased array probe for biomedical imaging applications,” Opt. Lett. 36(23), 4560–4562 (2011).
    [Crossref] [PubMed]
  20. B. Lashkari and A. Mandelis, “Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media,” J. Acoust. Soc. Am. 130(3), 1313–1324 (2011).
    [Crossref] [PubMed]
  21. S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum. 81(12), 124901 (2010).
    [Crossref] [PubMed]
  22. A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
    [Crossref] [PubMed]
  23. S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11(4), 044006 (2006).
    [Crossref] [PubMed]
  24. G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice Hall, 1987).

2015 (2)

2014 (1)

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

2013 (1)

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

2012 (2)

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (5)

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[Crossref] [PubMed]

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum. 81(12), 124901 (2010).
[Crossref] [PubMed]

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[Crossref] [PubMed]

J. E. Muller, N. J. Weissman, and E. M. Tuzcu, “The year in intracoronary imaging,” JACC Cardiovasc. Imaging 3(8), 881–891 (2010).
[Crossref] [PubMed]

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

2009 (2)

A. Maehara, G. S. Mintz, and N. J. Weissman, “Advances in intravascular imaging,” Circ. Cardiovasc. Interv. 2(5), 482–490 (2009).
[Crossref] [PubMed]

S. A. Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements,” J. Biomed. Opt. 14(4), 044025 (2009).
[Crossref] [PubMed]

2008 (2)

2006 (1)

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11(4), 044006 (2006).
[Crossref] [PubMed]

2004 (2)

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
[Crossref] [PubMed]

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

1991 (1)

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Allen, T. J.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Alwi, R.

Amirian, J.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[Crossref] [PubMed]

Amirian, J. H.

Athanasiou, L.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

Beard, P. C.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Berk, M.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Booth, D. C.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Bourantas, C. V.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

De Meyer, G. R. Y.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

DeMaria, A. N.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Dhillon, A. P.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Emelianov, S.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[Crossref] [PubMed]

Emelianov, S. Y.

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[Crossref] [PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
[Crossref] [PubMed]

Fan, Y.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
[Crossref] [PubMed]

Fischer, C.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Fotiadis, D. I.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

Garcia-Garcia, H. M.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

Garg, S.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Gijsen, F. J. H.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Grines, C. L.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Gurley, J. C.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Hall, A.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Jansen, K.

Ji, X.

X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
[Crossref] [PubMed]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Karpiouk, A.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

Karpiouk, A. B.

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[Crossref] [PubMed]

Knaapen, M. W. M.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

Kockx, M. M.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

Krams, R.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

Lashkari, B.

B. Lashkari and A. Mandelis, “Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media,” J. Acoust. Soc. Am. 130(3), 1313–1324 (2011).
[Crossref] [PubMed]

Litovsky, S.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

Litovsky, S. H.

Maehara, A.

A. Maehara, G. S. Mintz, and N. J. Weissman, “Advances in intravascular imaging,” Circ. Cardiovasc. Interv. 2(5), 482–490 (2009).
[Crossref] [PubMed]

Mandelis, A.

B. Lashkari and A. Mandelis, “Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media,” J. Acoust. Soc. Am. 130(3), 1313–1324 (2011).
[Crossref] [PubMed]

S. Telenkov, R. Alwi, A. Mandelis, and A. Worthington, “Frequency-domain photoacoustic phased array probe for biomedical imaging applications,” Opt. Lett. 36(23), 4560–4562 (2011).
[Crossref] [PubMed]

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum. 81(12), 124901 (2010).
[Crossref] [PubMed]

S. A. Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements,” J. Biomed. Opt. 14(4), 044025 (2009).
[Crossref] [PubMed]

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11(4), 044006 (2006).
[Crossref] [PubMed]

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
[Crossref] [PubMed]

Maslov, K.

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

Mastik, F.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

McClure, R.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Michalis, L. K.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

Mintz, G. S.

A. Maehara, G. S. Mintz, and N. J. Weissman, “Advances in intravascular imaging,” Circ. Cardiovasc. Interv. 2(5), 482–490 (2009).
[Crossref] [PubMed]

Mousavi Gourabi, B.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

Muller, J. E.

J. E. Muller, N. J. Weissman, and E. M. Tuzcu, “The year in intracoronary imaging,” JACC Cardiovasc. Imaging 3(8), 881–891 (2010).
[Crossref] [PubMed]

Naka, K. K.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

Nissen, S. E.

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Oosterhuis, J. W.

Owen, J. S.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Regar, E.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Sakellarios, A.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

Schultz, C.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Serruys, P. W.

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

Sethuraman, S.

Smalling, R.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[Crossref] [PubMed]

Smalling, R. W.

Spirou, G.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
[Crossref] [PubMed]

Su, J. L.

Telenkov, S.

S. Telenkov, R. Alwi, A. Mandelis, and A. Worthington, “Frequency-domain photoacoustic phased array probe for biomedical imaging applications,” Opt. Lett. 36(23), 4560–4562 (2011).
[Crossref] [PubMed]

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum. 81(12), 124901 (2010).
[Crossref] [PubMed]

Telenkov, S. A.

S. A. Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements,” J. Biomed. Opt. 14(4), 044025 (2009).
[Crossref] [PubMed]

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11(4), 044006 (2006).
[Crossref] [PubMed]

Tuzcu, E. M.

J. E. Muller, N. J. Weissman, and E. M. Tuzcu, “The year in intracoronary imaging,” JACC Cardiovasc. Imaging 3(8), 881–891 (2010).
[Crossref] [PubMed]

van Beusekom, H. M. M.

Van Damme, L. C. A.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

van der Giessen, A. G.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

van der Steen, A. F. W.

M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
[Crossref] [PubMed]

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Van Langenhove, G.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

van Soest, G.

Verheye, S.

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

Vitkin, I. A.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
[Crossref] [PubMed]

Wang, B.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[Crossref] [PubMed]

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[Crossref] [PubMed]

Wang, L. V.

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

Weissman, N. J.

J. E. Muller, N. J. Weissman, and E. M. Tuzcu, “The year in intracoronary imaging,” JACC Cardiovasc. Imaging 3(8), 881–891 (2010).
[Crossref] [PubMed]

A. Maehara, G. S. Mintz, and N. J. Weissman, “Advances in intravascular imaging,” Circ. Cardiovasc. Interv. 2(5), 482–490 (2009).
[Crossref] [PubMed]

Wentzel, J. J.

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Worthington, A.

Wu, M.

Xing, D.

X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
[Crossref] [PubMed]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Xiong, K.

Yang, S.

X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
[Crossref] [PubMed]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Yeager, D.

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Zhou, Q.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Circ Cardiovasc Imaging (1)

J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan,” Circ Cardiovasc Imaging 3(6), e6–e7 (2010).
[Crossref] [PubMed]

Circ. Cardiovasc. Interv. (1)

A. Maehara, G. S. Mintz, and N. J. Weissman, “Advances in intravascular imaging,” Circ. Cardiovasc. Interv. 2(5), 482–490 (2009).
[Crossref] [PubMed]

Circulation (1)

S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, M. Berk, C. Fischer, and A. N. DeMaria, “Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease,” Circulation 84(3), 1087–1099 (1991).
[Crossref] [PubMed]

Eur. Heart J. (1)

S. Verheye, G. R. Y. De Meyer, R. Krams, M. M. Kockx, L. C. A. Van Damme, B. Mousavi Gourabi, M. W. M. Knaapen, G. Van Langenhove, and P. W. Serruys, “Intravascular thermography: Immediate functional and morphological vascular findings,” Eur. Heart J. 25(2), 158–165 (2004).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (2)

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004).
[Crossref] [PubMed]

B. Lashkari and A. Mandelis, “Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media,” J. Acoust. Soc. Am. 130(3), 1313–1324 (2011).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (2)

C. V. Bourantas, H. M. Garcia-Garcia, K. K. Naka, A. Sakellarios, L. Athanasiou, D. I. Fotiadis, L. K. Michalis, and P. W. Serruys, “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” J. Am. Coll. Cardiol. 61(13), 1369–1378 (2013).
[Crossref] [PubMed]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11(4), 044006 (2006).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

S. A. Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements,” J. Biomed. Opt. 14(4), 044025 (2009).
[Crossref] [PubMed]

JACC Cardiovasc. Imaging (1)

J. E. Muller, N. J. Weissman, and E. M. Tuzcu, “The year in intracoronary imaging,” JACC Cardiovasc. Imaging 3(8), 881–891 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum. 81(12), 124901 (2010).
[Crossref] [PubMed]

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound Med. Biol. 38(12), 2098–2103 (2012).
[Crossref] [PubMed]

Other (2)

N. D. Gladkova, E. V Gubarkova, E. G. Sharabrin, V. I. Stelmashok, and A. E. Beimanov, “The potential and limitations of intravascular optical coherence tomography,” Sovrem. Tehnol. v Med. 2012, 128–141 (2012).

G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice Hall, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Probe design at the distal end of the imaging probe; (b) Image of the IVUS/FD-IVPA probe mounted on a brass rod.
Fig. 2
Fig. 2 Schematic of experimental setup.
Fig. 3
Fig. 3 a) Block-diagram of FD correlation processing; b) Fourier spectrum of laser modulation; c) Computed correlation signal for input SNR = −30dB and 8 averages.
Fig. 4
Fig. 4 (a-c) Images of a vessel phantom with graphite targets and (d-f) Images of a vessel phantom with lipid targets. FD-IVPA imaged at 1210nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s(t)= 1 { W(ω) R * (ω)P(ω) }.
SN R out ~ E N o .
SN R in ~ A o 2 N o Δf .
SN R out SN R in ~ T ch Δf.

Metrics