Abstract

Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique

Christopher J. Davey, Alexander Argyros, Simon C. Fleming, and Samuel G. Solomon
Appl. Opt. 54(34) 10068-10072 (2015)

Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue

Hiroaki Takehara, Yasumi Ohta, Mayumi Motoyama, Makito Haruta, Mizuki Nagasaki, Hironari Takehara, Toshihiko Noda, Kiyotaka Sasagawa, Takashi Tokuda, and Jun Ohta
Biomed. Opt. Express 6(5) 1553-1564 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
    [Crossref] [PubMed]
  2. R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
    [Crossref] [PubMed]
  3. J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
    [Crossref] [PubMed]
  4. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
    [Crossref] [PubMed]
  5. T. V. F. Abaya, S. Blair, P. Tathireddy, L. Rieth, and F. Solzbacher, “A 3D glass optrode array for optical neural stimulation,” Biomed. Opt. Express 3(12), 3087–3104 (2012).
    [Crossref] [PubMed]
  6. K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
    [Crossref] [PubMed]
  7. Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
    [Crossref] [PubMed]
  8. N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
    [Crossref] [PubMed]
  9. S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
    [Crossref] [PubMed]
  10. B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
    [Crossref] [PubMed]
  11. K. Dhakal, L. Gu, B. Black, and S. K. Mohanty, “Fiber-optic two-photon optogenetic stimulation,” Opt. Lett. 38(11), 1927–1929 (2013).
    [Crossref] [PubMed]
  12. S. Satpathy, S. Batabyal, K. R. Dhakal, J. Lin, Y. T. Kim, and S. K. Mohanty, “Broad spectral excitation of opsin for enhanced stimulation of cells,” Opt. Lett. 40(11), 2465–2468 (2015).
    [Crossref] [PubMed]
  13. A. Tripathi, P. Whittingstall, and G. H. McKinley, “Using filament stretching rheometry to predict standard formation and processability in adhesive and other non-Newtonian fluids,” Rheol. Acta 39(4), 321–337 (2000).
    [Crossref]
  14. S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
    [Crossref]
  15. S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
    [Crossref] [PubMed]
  16. T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
    [Crossref] [PubMed]
  17. C. D. Mobley, “The optical properties of water.” in Handbook of Optics, 2nd ed. (McGraw-Hill, 1995).
  18. V. D. Tuan, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC press, 2014).
  19. F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
    [Crossref] [PubMed]
  20. K. Y. Kwon, A. Weber, and W. Li, “Varying-length polymer microneedle arrays fabricated by droplet backside exposure,” J. Microelectromech. Syst. 23(6), 1272–1280 (2014).
    [Crossref]
  21. F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
    [Crossref] [PubMed]
  22. D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet 368(9549), 1795–1809 (2006).
    [Crossref] [PubMed]
  23. T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
    [Crossref] [PubMed]

2015 (3)

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

S. Satpathy, S. Batabyal, K. R. Dhakal, J. Lin, Y. T. Kim, and S. K. Mohanty, “Broad spectral excitation of opsin for enhanced stimulation of cells,” Opt. Lett. 40(11), 2465–2468 (2015).
[Crossref] [PubMed]

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

2014 (2)

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

K. Y. Kwon, A. Weber, and W. Li, “Varying-length polymer microneedle arrays fabricated by droplet backside exposure,” J. Microelectromech. Syst. 23(6), 1272–1280 (2014).
[Crossref]

2013 (4)

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

K. Dhakal, L. Gu, B. Black, and S. K. Mohanty, “Fiber-optic two-photon optogenetic stimulation,” Opt. Lett. 38(11), 1927–1929 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

2010 (2)

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

2009 (1)

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

2007 (1)

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

2006 (2)

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet 368(9549), 1795–1809 (2006).
[Crossref] [PubMed]

2000 (1)

A. Tripathi, P. Whittingstall, and G. H. McKinley, “Using filament stretching rheometry to predict standard formation and processability in adhesive and other non-Newtonian fluids,” Rheol. Acta 39(4), 321–337 (2000).
[Crossref]

Abaya, T. V. F.

Al-Hasani, R.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Andrasfalvy, B. K.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Anikeeva, P.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Aravanis, A. M.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Arlow, R. L.

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Batabyal, S.

Berlinguer Palmini, R.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Berry, S. M.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Berson, E. L.

D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet 368(9549), 1795–1809 (2006).
[Crossref] [PubMed]

Black, B.

Blair, S.

Bories, C.

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Boyden, E. S.

A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
[Crossref] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Bruchas, M. R.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Burrone, J.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Buzsáki, G.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Cambron, S. D.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Chander, D.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Cho, I. J.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Cohn, R. W.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Connors, B. W.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Crest, J.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Dawson, M. D.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

De Koninck, Y.

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Degenaar, P.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Deisseroth, K.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Deschênes, M.

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Dhakal, K.

Dhakal, K. R.

Drakakis, E. M.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Dryja, T. P.

D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet 368(9549), 1795–1809 (2006).
[Crossref] [PubMed]

Dufour, S.

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Fonstad, C. G.

Foutz, T. J.

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Ghovanloo, M.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Gong, Z.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Grossman, N.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Grubb, M. S.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Gu, L.

Hartong, D. T.

D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet 368(9549), 1795–1809 (2006).
[Crossref] [PubMed]

Huang, X.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Huang, Y.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Im, M.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Ishizuka, T.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Jung, Y. H.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Kennedy, G. T.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Keynton, R. S.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Kim, J. A.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Kim, R. H.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Kim, S.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Kim, T. I.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Kim, Y. T.

Kwon, K. Y.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

K. Y. Kwon, A. Weber, and W. Li, “Varying-length polymer microneedle arrays fabricated by droplet backside exposure,” J. Microelectromech. Syst. 23(6), 1272–1280 (2014).
[Crossref]

Laiwalla, F.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Lavertu, G.

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

LeChasseur, Y.

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Lee, H. M.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Lee, J. H.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Lee, S. D.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Li, W.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

K. Y. Kwon, A. Weber, and W. Li, “Varying-length polymer microneedle arrays fabricated by droplet backside exposure,” J. Microelectromech. Syst. 23(6), 1272–1280 (2014).
[Crossref]

Li, Y.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Lin, J.

Lu, C.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

McCall, J. G.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

McGovern, B.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

McIntyre, C. C.

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

McKinley, G. H.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

A. Tripathi, P. Whittingstall, and G. H. McKinley, “Using filament stretching rheometry to predict standard formation and processability in adhesive and other non-Newtonian fluids,” Rheol. Acta 39(4), 321–337 (2000).
[Crossref]

Meltzer, L. A.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Mogri, M. Z.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Mohanty, S. K.

Neil, M. A. A.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Nikolic, K.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Nurmikko, A. V.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Omenetto, F. G.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Pabba, S.

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Pao, H. A.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Pashaie, R.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Poher, V.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

Prakash, R.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Prigge, M.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Richner, T. J.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Rieth, L.

Rogers, J. A.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Sakai, S.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Satpathy, S.

Schneider, M. B.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Scholvin, J.

Shin, G.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Siuda, E. R.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Solzbacher, F.

Song, I. S.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Song, J.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Song, Y. K.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Song, Y. M.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Stark, E.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Tan, M. P.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Tang, J.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Tathireddy, P.

Tripathi, A.

A. Tripathi, P. Whittingstall, and G. H. McKinley, “Using filament stretching rheometry to predict standard formation and processability in adhesive and other non-Newtonian fluids,” Rheol. Acta 39(4), 321–337 (2000).
[Crossref]

Ueno, K.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Urabe, H.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Vallée, R.

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Van Wagenen, R.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Vaziri, A.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Wang, L. P.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Weber, A.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

K. Y. Kwon, A. Weber, and W. Li, “Varying-length polymer microneedle arrays fabricated by droplet backside exposure,” J. Microelectromech. Syst. 23(6), 1272–1280 (2014).
[Crossref]

Whittingstall, P.

A. Tripathi, P. Whittingstall, and G. H. McKinley, “Using filament stretching rheometry to predict standard formation and processability in adhesive and other non-Newtonian fluids,” Rheol. Acta 39(4), 321–337 (2000).
[Crossref]

Williams, J.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Wise, K. D.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Wu, F.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Yawo, H.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Yizhar, O.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Yoon, E.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Yoon, E. S.

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Zemelman, B. V.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Zhang, F.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

Zorzos, A. N.

Biomed. Opt. Express (1)

Front. Syst. Neurosci. (1)

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

IEEE Rev. Biomed. Eng. (1)

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

J. Microelectromech. Syst. (1)

K. Y. Kwon, A. Weber, and W. Li, “Varying-length polymer microneedle arrays fabricated by droplet backside exposure,” J. Microelectromech. Syst. 23(6), 1272–1280 (2014).
[Crossref]

J. Neural Eng. (4)

F. Wu, E. Stark, M. Im, I. J. Cho, E. S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng. 6(5), 055007 (2009).
[Crossref] [PubMed]

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. Berlinguer Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref] [PubMed]

J. Neurophysiol. (1)

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Lancet (1)

D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet 368(9549), 1795–1809 (2006).
[Crossref] [PubMed]

Nat. Methods (2)

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, and Y. De Koninck, “A microprobe for parallel optical and electrical recordings from single neurons in vivo,” Nat. Methods 8(4), 319–325 (2011).
[Crossref] [PubMed]

Neurophotonics (1)

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

Neurosci. Res. (1)

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Polymer (Guildf.) (1)

S. M. Berry, S. Pabba, J. Crest, S. D. Cambron, G. H. McKinley, R. W. Cohn, and R. S. Keynton, “Characterization and modeling of direct-write fabrication of microscale polymer fibers,” Polymer (Guildf.) 52(7), 1654–1661 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Rheol. Acta (1)

A. Tripathi, P. Whittingstall, and G. H. McKinley, “Using filament stretching rheometry to predict standard formation and processability in adhesive and other non-Newtonian fluids,” Rheol. Acta 39(4), 321–337 (2000).
[Crossref]

Science (1)

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Other (2)

C. D. Mobley, “The optical properties of water.” in Handbook of Optics, 2nd ed. (McGraw-Hill, 1995).

V. D. Tuan, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a)-(d). Fabrication steps of microfiber array platform.
Fig. 2
Fig. 2 Simulated irradiance profiles. (a, b) The simulated irradiance profile on the end face of microfiber platform in (a) water and (b) tissue environments. (c, d) Normalized intensity profile at axial distance of 0, 50, 100 μm in (c) water and (d) tissue environments. (e) Axial normalized intensity profile at microfiber center.
Fig. 3
Fig. 3 Experimental setup for optogenetic activation of single cells on microfiber array platform.
Fig. 4
Fig. 4 (a) The top view of optical microscope image of PDMS micro rods. (b) SEM image of drawn microfibers. (c) The side view of optical microscope image of drawn PMMA microfibers. The blue line indicates the packaged PDMS plane. (d) The top view of optical microscope image of exposed end face of packaged microfiber array.
Fig. 5
Fig. 5 (a) The optical microscope image of blue light spots on black PDMS packaged microfiber array illuminated by blue LED. (b) Measured intensity of the blue LED light emission on the microfiber array in the middle row. (c) Measured intensity of light emission on the end face of microfiber through gelatin (20% w/w).
Fig. 6
Fig. 6 Optogenetic stimulation of single HEK293T cell. (a) Bright field and (b) mCherry fluorescence images of cultured HEK293T cells seeded on the end face of the microfiber platform. (c, d) Representative fluorescence intensity traces of a Ca2+ sensitive dye from HEK293T cells expressing (c) ChR2m or (d) a control plasmid. The arrow indicated the application of a 405-nm laser. (e) The average changes in the fluorescence intensity of the Ca2+-sensitive dye in cells after UV illumination. The sample number for cells expressing ChR2m or a control plasmid were 11 and 10, respectively. Data presented were Mean ± S.E.M; **: p < 0.005 when compared with the control group.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D( t= )= D 1 e 0.0709 2P

Metrics