Abstract

Bifocal contact or intraocular lenses use the principle of simultaneous vision to correct for presbyopia. A modified two-channel simultaneous vision simulator provided with an amplitude transmission spatial light modulator was used to optically simulate 14 segmented bifocal patterns (+ 3 diopters addition) with different far/near pupillary distributions of equal energy. Five subjects with paralyzed accommodation evaluated image quality and subjective preference through the segmented bifocal corrections. There are strong and systematic perceptual differences across the patterns, subjects and observation distances: 48% of the conditions evaluated were significantly preferred or rejected. Optical simulations (in terms of through-focus Strehl ratio from Hartmann-Shack aberrometry) accurately predicted the pattern producing the highest perceived quality in 4 out of 5 patients, both for far and near vision. These perceptual differences found arise primarily from optical grounds, but have an important neural component.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Pablo De Gracia, Lucie Sawides, and Susana Marcos, "Perceived image quality with simulated segmented bifocal corrections: publisher’s note," Biomed. Opt. Express 7, 4620-4620 (2016)
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-7-11-4620

17 October 2016: Corrections were made to the author affiliations.


OSA Recommended Articles
Portable simultaneous vision device to simulate multifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Jose Ramon Alonso-Sanz, Daniel Pascual, Miriam Velasco-Ocana, Pablo Perez-Merino, and Susana Marcos
Optica 3(8) 918-924 (2016)

Comparison of vision through surface modulated and spatial light modulated multifocal optics

Maria Vinas, Carlos Dorronsoro, Aiswaryah Radhakrishnan, Clara Benedi-Garcia, Edward Anthony LaVilla, Jim Schwiegerling, and Susana Marcos
Biomed. Opt. Express 8(4) 2055-2068 (2017)

Temporal multiplexing with adaptive optics for simultaneous vision

Eleni Papadatou, Antonio J. Del Águila-Carrasco, Iván Marín-Franch, and Norberto López-Gil
Biomed. Opt. Express 7(10) 4102-4113 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
    [Crossref] [PubMed]
  2. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [Crossref] [PubMed]
  3. J. L. Alio and J. Pikkel, Multifocal Intraocular Lenses: The Art and the Practice (Springer International Publishing, E-book, 2014).
  4. A. Zlotnik, S. Ben Yaish, O. Yehezkel, K. Lahav-Yacouel, M. Belkin, and Z. Zalevsky, “Extended depth of focus contact lenses for presbyopia,” Opt. Lett. 34(14), 2219–2221 (2009).
    [Crossref] [PubMed]
  5. Y. Benard, N. Lopez-Gil, and R. Legras, “Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration,” Vision Res. 51(23-24), 2471–2477 (2011).
    [Crossref] [PubMed]
  6. R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
    [Crossref] [PubMed]
  7. A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
    [Crossref] [PubMed]
  8. R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16(1), 33–37 (2005).
    [Crossref] [PubMed]
  9. S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
    [Crossref] [PubMed]
  10. B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
    [PubMed]
  11. P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
    [Crossref] [PubMed]
  12. C. Dorronsoro and S. Marcos, “Instrument for simulating multifocal ophthalmic corrections,” Patent PCT/ES2010/070218 (2009).
  13. A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
    [Crossref] [PubMed]
  14. P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
    [Crossref] [PubMed]
  15. J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
    [Crossref] [PubMed]
  16. S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
    [Crossref] [PubMed]
  17. G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
    [Crossref] [PubMed]
  18. D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
    [Crossref] [PubMed]
  19. D. G. Pelli and B. Farell, Psychophysical Methods: In Handbook of Optics (McGraw Hill Publishers, New York, 1995).
  20. R. D. Yates and D. J. Goodman, Probability and stochastic processes: A friendly introduction for Elctrical and Computer engineers (John Wiley & Sons Inc, New Jersey, 2005).
  21. L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
    [Crossref] [PubMed]
  22. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis.8(1), (2008).
    [Crossref]
  23. J. Goodman, Introduction to Fourier Optics (McGraw-Hill Companies Inc, New York, 1996).
  24. R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Res. 50(12), 1185–1193 (2010).
    [Crossref] [PubMed]
  25. J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
    [Crossref] [PubMed]
  26. A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refract. Surg. (to be published).
  27. P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
    [Crossref] [PubMed]
  28. J. C. Vryghem and S. Heireman, “Visual performance after the implantation of a new trifocal intraocular lens,” Clin. Ophthalmol. 7, 1957–1965 (2013).
    [Crossref] [PubMed]
  29. J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).
  30. E. LaVilla, M. Vinas, S. Marcos, and J. Schwiegerling, “Freeform Design of Multifocal Zone Plates,” in Imaging and Applied Optics, (2015), p. FW3B.3.
  31. M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).
  32. C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).
  33. C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator,” Patent PCT/ES2014/070725 (2013).
  34. C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal correction,” Optica (to be published).

2015 (3)

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

2014 (5)

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

2013 (4)

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref] [PubMed]

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

J. C. Vryghem and S. Heireman, “Visual performance after the implantation of a new trifocal intraocular lens,” Clin. Ophthalmol. 7, 1957–1965 (2013).
[Crossref] [PubMed]

2012 (3)

J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
[Crossref] [PubMed]

J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
[Crossref] [PubMed]

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Benard, N. Lopez-Gil, and R. Legras, “Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration,” Vision Res. 51(23-24), 2471–2477 (2011).
[Crossref] [PubMed]

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

2010 (1)

R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Res. 50(12), 1185–1193 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
[Crossref] [PubMed]

2005 (1)

R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16(1), 33–37 (2005).
[Crossref] [PubMed]

1998 (1)

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

1997 (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

Albarrán-Diego, C.

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

Aldaba, M.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

Alió, J. L.

J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
[Crossref] [PubMed]

J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
[Crossref] [PubMed]

Amigó, A.

S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
[Crossref] [PubMed]

Arasa, J.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

Artal, P.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Ayala, M. J.

J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
[Crossref] [PubMed]

Barragán Garza, E.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Belkin, M.

Bellucci, R.

R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16(1), 33–37 (2005).
[Crossref] [PubMed]

Ben Yaish, S.

Benard, Y.

Y. Benard, N. Lopez-Gil, and R. Legras, “Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration,” Vision Res. 51(23-24), 2471–2477 (2011).
[Crossref] [PubMed]

R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Res. 50(12), 1185–1193 (2010).
[Crossref] [PubMed]

Berdeaux, G.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

Bonaque-González, S.

S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
[Crossref] [PubMed]

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

Campbell, M. C.

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Canovas, C.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Casuccio, A.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Cerviño, A.

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

Chayet, A. S.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Cillino, G.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Cillino, S.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Cochener, B.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

Cortes, D.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

Courouve, L.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

de Gracia, P.

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref] [PubMed]

Di Pace, F.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Dorronsoro, C.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref] [PubMed]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis.8(1), (2008).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refract. Surg. (to be published).

Ferrer-Blasco, T.

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

Gambra, E.

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis.8(1), (2008).
[Crossref]

García-Lázaro, S.

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

Giner, A.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

Glasser, A.

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Gonzalez, V.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

Haun, A. M.

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

Heireman, S.

J. C. Vryghem and S. Heireman, “Visual performance after the implantation of a new trifocal intraocular lens,” Clin. Ophthalmol. 7, 1957–1965 (2013).
[Crossref] [PubMed]

Holliday, K.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Javaloy, J.

J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
[Crossref] [PubMed]

J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
[Crossref] [PubMed]

Khoshnood, B.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

Kukuckova, L.

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

Lafuma, A.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

Lahav-Yacouel, K.

Lang, A.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Legras, R.

Y. Benard, N. Lopez-Gil, and R. Legras, “Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration,” Vision Res. 51(23-24), 2471–2477 (2011).
[Crossref] [PubMed]

R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Res. 50(12), 1185–1193 (2010).
[Crossref] [PubMed]

Liehneova, K.

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

Lodato, G.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Lopez-Gil, N.

Y. Benard, N. Lopez-Gil, and R. Legras, “Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration,” Vision Res. 51(23-24), 2471–2477 (2011).
[Crossref] [PubMed]

López-Gil, N.

S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
[Crossref] [PubMed]

Luque, S.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

Majerova, K.

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

Manzanera, S.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Marcos, S.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref] [PubMed]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis.8(1), (2008).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refract. Surg. (to be published).

Mojzis, P.

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

Montalban, R.

J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
[Crossref] [PubMed]

Morreale, R.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Muñoz, G.

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

Peli, E.

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

Piers, P. A.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Pillitteri, F.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Piñero, D. P.

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

Plaza-Puche, A. B.

J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
[Crossref] [PubMed]

J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
[Crossref] [PubMed]

Prieto, P.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Pujol, J.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

Radhakrishnan, A.

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refract. Surg. (to be published).

Ríos, S.

S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
[Crossref] [PubMed]

Rouger, H.

R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Res. 50(12), 1185–1193 (2010).
[Crossref] [PubMed]

Roy, A.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Sánchez-González, Á.

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

Sawides, L.

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis.8(1), (2008).
[Crossref]

Schwarz, C.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Schwiegerling, J.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Steinert, R. F.

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

Vinas, M.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

Vryghem, J. C.

J. C. Vryghem and S. Heireman, “Visual performance after the implantation of a new trifocal intraocular lens,” Clin. Ophthalmol. 7, 1957–1965 (2013).
[Crossref] [PubMed]

Weeber, H. A.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

Yehezkel, O.

Zalevsky, Z.

Zlotnik, A.

Clin. Exp. Optom. (1)

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
[Crossref] [PubMed]

Clin. Ophthalmol. (2)

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
[PubMed]

J. C. Vryghem and S. Heireman, “Visual performance after the implantation of a new trifocal intraocular lens,” Clin. Ophthalmol. 7, 1957–1965 (2013).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16(1), 33–37 (2005).
[Crossref] [PubMed]

Eur. J. Ophthalmol. (1)

G. Muñoz, C. Albarrán-Diego, A. Cerviño, T. Ferrer-Blasco, and S. García-Lázaro, “Visual and optical performance with the ReZoom multifocal intraocular lens,” Eur. J. Ophthalmol. 22(3), 356–362 (2012).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

P. de Gracia, C. Dorronsoro, Á. Sánchez-González, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref] [PubMed]

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Vis. Sci. 55, 3752 (2014).

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with radial and angulary segmented multifocal patterns using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 56, 1358 (2015).

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Vis. Sci. 55, 4024 (2014).

J. Cataract Refract. Surg. (2)

R. F. Steinert, J. Schwiegerling, A. Lang, A. Roy, K. Holliday, E. Barragán Garza, and A. S. Chayet, “Range of refractive independence and mechanism of action of a corneal shape-changing hydrogel inlay: results and theory,” J. Cataract Refract. Surg. 41(8), 1568–1579 (2015).
[Crossref] [PubMed]

J. L. Alió, A. B. Plaza-Puche, R. Montalban, and J. Javaloy, “Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens,” J. Cataract Refract. Surg. 38(6), 978–985 (2012).
[Crossref] [PubMed]

J. Refract. Surg. (3)

S. Bonaque-González, S. Ríos, A. Amigó, and N. López-Gil, “Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses,” J. Refract. Surg. 31(10), 651–657 (2015).
[Crossref] [PubMed]

P. Mojzis, L. Kukuckova, K. Majerova, K. Liehneova, and D. P. Piñero, “Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL,” J. Refract. Surg. 30(10), 666–672 (2014).
[Crossref] [PubMed]

J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. 28(2), 100–105 (2012).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

Ophthalmology (1)

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115(9), 1508–1516 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

PLoS One (2)

L. Sawides, C. Dorronsoro, A. M. Haun, E. Peli, and S. Marcos, “Using pattern classification to measure adaptation to the orientation of high order aberrations,” PLoS One 8(8), e70856 (2013).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

Spat. Vis. (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

Vision Res. (3)

Y. Benard, N. Lopez-Gil, and R. Legras, “Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration,” Vision Res. 51(23-24), 2471–2477 (2011).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Res. 50(12), 1185–1193 (2010).
[Crossref] [PubMed]

Other (10)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis.8(1), (2008).
[Crossref]

J. Goodman, Introduction to Fourier Optics (McGraw-Hill Companies Inc, New York, 1996).

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refract. Surg. (to be published).

E. LaVilla, M. Vinas, S. Marcos, and J. Schwiegerling, “Freeform Design of Multifocal Zone Plates,” in Imaging and Applied Optics, (2015), p. FW3B.3.

C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator,” Patent PCT/ES2014/070725 (2013).

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal correction,” Optica (to be published).

J. L. Alio and J. Pikkel, Multifocal Intraocular Lenses: The Art and the Practice (Springer International Publishing, E-book, 2014).

C. Dorronsoro and S. Marcos, “Instrument for simulating multifocal ophthalmic corrections,” Patent PCT/ES2010/070218 (2009).

D. G. Pelli and B. Farell, Psychophysical Methods: In Handbook of Optics (McGraw Hill Publishers, New York, 1995).

R. D. Yates and D. J. Goodman, Probability and stochastic processes: A friendly introduction for Elctrical and Computer engineers (John Wiley & Sons Inc, New Jersey, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simultaneous vision simulator with two Badal Channels (Channel 1: lenses L1 and L2 and mirrors M1 and M2. Channel 2: L3, L4, M3, M4) and a transmission liquid crystal spatial light modulator (SLM) optically conjugated with the pupil of the subject’s eye. Both channels are split using a polarizing cube beam splitter (CBS) in combination with a linear polarizer (LP) and the SLM, and recombined using a double mirror (MM), and a Beam Splitter (BS).
Fig. 2
Fig. 2 (A) Bifocal pupillary patterns (BPPs) simulated in this study. Far (in blue) and near (in orange) regions have equal area and energy. (B) Image of BPP#6 (2 zones), BPP#10 (4 zones) and BPP#14 (8 zones) captured with a CCD camera at pupil plane through only the far vision channel (left) only the near vision channel (center) and through both channels (right).
Fig. 3
Fig. 3 Illustration of the method for assessing subjective preferences to segmented bifocal patterns.
Fig. 4
Fig. 4 Preference maps for all subjects across far, intermediate and near distances. Pooled preferences subjects and across subjects and distances is given in last column. Red dots indicate significant rejection, green dots indicate significant preference and gray dots indicate non-significant preferences at p<0.05.
Fig. 5
Fig. 5 Perceived optical quality to BPP for far (blue), intermediate (brown) and near distances (orange). A-E shows data for individual subjects, F shows the average across subjects and G shows average across subjects and distances.
Fig. 6
Fig. 6 Perceived quality on an average across distances for each subject and for on an average across subjects (blue line).
Fig. 7
Fig. 7 Ocular wave aberration maps, and corresponding RMS in microns, for the five subjects.
Fig. 8
Fig. 8 Perceived Quality vs Optical Quality (Strehl Ratio) for all subjects at far and near distances. Each symbol represents a different pattern.

Metrics