Abstract

Measuring key physiological parameters of small blood samples extracted from patients could be useful for real-time clinical diagnosis at the point of care. An important parameter required from all blood tests is the blood hematocrit, a measure of the fractional volume occupied by the red cells within the blood. In this work, we present a method for in vitro evaluation of hematocrit based on the data acquired using spectrally encoded flow cytometry. Analysis of the reflectance confocal images of blood within a flow chamber resulted in an error as low as 1.7% in the measured hematocrit. The technique could be used as part of an in vitro diagnostic system that measures important blood parameters at the point of care.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry

Lior Golan, Daniella Yeheskely-Hayon, Limor Minai, Eldad J Dann, and Dvir Yelin
Biomed. Opt. Express 3(6) 1455-1464 (2012)

Reflectance confocal microscopy of red blood cells: simulation and experiment

Adel Zeidan and Dvir Yelin
Biomed. Opt. Express 6(11) 4335-4343 (2015)

Measuring blood velocity using correlative spectrally encoded flow cytometry

Tal Elhanan and Dvir Yelin
Opt. Lett. 39(15) 4424-4426 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Billett, “Hemoglobin and Hematocrit,” in Clinical Methods: The History, Physical, and Laboratory Examinations., H. W. Walker, H. K. Hurst, ed. (Butterworths, Boston, 1990).
  2. J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
    [Crossref] [PubMed]
  3. W. S. Chen, H. H. Zhu, and G.-S. Feng, “Treating leukemia at the risk of inducing severe anemia,” Exp. Hematol. 44(5), 329–331 (2016).
    [Crossref] [PubMed]
  4. B. J. Stuart and A. J. Viera, “Polycythemia vera,” Am. Fam. Physician 69(9), 2139–2144 (2004).
    [PubMed]
  5. C. R. Kjeldsberg, Practical Diagnosis of Hematologic Disorders (ASCP Press, 2000).
  6. J. Y. Vis and A. Huisman, “Verification and quality control of routine hematology analyzers,” Int. J. Lab. Hematol. 38(Suppl 1), 100–109 (2016).
    [Crossref] [PubMed]
  7. D. Heikali and D. Di Carlo, “A Niche for Microfluidics in Portable Hematology Analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
    [Crossref]
  8. Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
    [Crossref] [PubMed]
  9. S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
    [Crossref] [PubMed]
  10. S. Oshima and Y. Sankai, “Optical measurement of blood hematocrit on medical tubing with dual wavelength and detector model,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2009), 5891–5896.
    [Crossref]
  11. M. Jędrzejewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), (2011), 387–391.
  12. E. F. Treo, D. O. Cervantes, C. J. Felice, M. Tirado, and M. E. Valentinuzzi, “Hematocrit measurement by dielectric spectroscopy,” in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002.Proceedings of the Second Joint, (2002), 1750–1751 vol.1752.
  13. D. Trebbels, R. Zengerle, and D. Hradetzky, “Hematocrit Measurement - A high precision on-line measurement system based on impedance spectroscopy for use in hemodialysis machines,” in World Congress on Medical Physics and Biomedical Engineering,September 7 - 12, 2009,Munich, Germany:Vol. 25/7 Diagnostic and Therapeutic Instrumentation, Clinical Engineering, O. Dössel and W. C. Schlegel, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 247–250.
    [Crossref]
  14. J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
    [Crossref] [PubMed]
  15. W. Secomski, A. Nowicki, and P. Tortoli, “Estimation of hematocrit by means of attenuation measurement of ultrasonic wave in human blood,” in Ultrasonics Symposium,2001IEEE, (2001), 1277–12801272.
    [Crossref]
  16. L. Golan and D. Yelin, “Flow cytometry using spectrally encoded confocal microscopy,” Opt. Lett. 35(13), 2218–2220 (2010).
    [Crossref] [PubMed]
  17. L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. Opt. Express 3(6), 1455–1464 (2012).
    [Crossref] [PubMed]
  18. L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. Lett. 37(24), 5154–5156 (2012).
    [Crossref] [PubMed]
  19. A. Zeidan and D. Yelin, “Reflectance confocal microscopy of red blood cells: simulation and experiment,” Biomed. Opt. Express 6(11), 4335–4343 (2015).
    [Crossref] [PubMed]
  20. A. Lovell, J. C. Hebden, J. C. Goldstone, and M. Cope, “Determination of the transport scattering coefficient of red blood cells,” in BiOS'99 International Biomedical Optics Symposium, (International Society for Optics and Photonics, 1999), 175–182.
  21. T. K. Gebretsadkan, G. Ambachew, and H. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2, 012 (2015).
  22. H. Chaplin and P. L. Mollison, “Correction for plasma trapped in the red cell column of the hematocrit,” Blood 7(12), 1227–1238 (1952).
    [PubMed]

2016 (5)

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

W. S. Chen, H. H. Zhu, and G.-S. Feng, “Treating leukemia at the risk of inducing severe anemia,” Exp. Hematol. 44(5), 329–331 (2016).
[Crossref] [PubMed]

J. Y. Vis and A. Huisman, “Verification and quality control of routine hematology analyzers,” Int. J. Lab. Hematol. 38(Suppl 1), 100–109 (2016).
[Crossref] [PubMed]

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
[Crossref] [PubMed]

2015 (2)

T. K. Gebretsadkan, G. Ambachew, and H. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2, 012 (2015).

A. Zeidan and D. Yelin, “Reflectance confocal microscopy of red blood cells: simulation and experiment,” Biomed. Opt. Express 6(11), 4335–4343 (2015).
[Crossref] [PubMed]

2012 (2)

2010 (2)

L. Golan and D. Yelin, “Flow cytometry using spectrally encoded confocal microscopy,” Opt. Lett. 35(13), 2218–2220 (2010).
[Crossref] [PubMed]

D. Heikali and D. Di Carlo, “A Niche for Microfluidics in Portable Hematology Analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[Crossref]

2007 (1)

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

2004 (1)

B. J. Stuart and A. J. Viera, “Polycythemia vera,” Am. Fam. Physician 69(9), 2139–2144 (2004).
[PubMed]

1952 (1)

H. Chaplin and P. L. Mollison, “Correction for plasma trapped in the red cell column of the hematocrit,” Blood 7(12), 1227–1238 (1952).
[PubMed]

Aalders, M. C. G.

S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
[Crossref] [PubMed]

Ambachew, G.

T. K. Gebretsadkan, G. Ambachew, and H. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2, 012 (2015).

Ben-Yosef, Y.

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Birhaneselassie, H.

T. K. Gebretsadkan, G. Ambachew, and H. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2, 012 (2015).

Bransky, A.

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Brouwer, R. M. H. J.

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

Capiau, S.

S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
[Crossref] [PubMed]

Chaplin, H.

H. Chaplin and P. L. Mollison, “Correction for plasma trapped in the red cell column of the hematocrit,” Blood 7(12), 1227–1238 (1952).
[PubMed]

Chen, W. S.

W. S. Chen, H. H. Zhu, and G.-S. Feng, “Treating leukemia at the risk of inducing severe anemia,” Exp. Hematol. 44(5), 329–331 (2016).
[Crossref] [PubMed]

D’Souza, C.

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Dann, E. J.

Di Carlo, D.

D. Heikali and D. Di Carlo, “A Niche for Microfluidics in Portable Hematology Analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[Crossref]

Feng, G.-S.

W. S. Chen, H. H. Zhu, and G.-S. Feng, “Treating leukemia at the risk of inducing severe anemia,” Exp. Hematol. 44(5), 329–331 (2016).
[Crossref] [PubMed]

Gebretsadkan, T. K.

T. K. Gebretsadkan, G. Ambachew, and H. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2, 012 (2015).

Gnyba, M.

M. Jędrzejewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), (2011), 387–391.

Golan, L.

Heikali, D.

D. Heikali and D. Di Carlo, “A Niche for Microfluidics in Portable Hematology Analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[Crossref]

Hirshberg, G.

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Huisman, A.

J. Y. Vis and A. Huisman, “Verification and quality control of routine hematology analyzers,” Int. J. Lab. Hematol. 38(Suppl 1), 100–109 (2016).
[Crossref] [PubMed]

Jedrzejewska-Szczerska, M.

M. Jędrzejewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), (2011), 387–391.

Johnson, C. D.

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

Kruczkowski, M.

M. Jędrzejewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), (2011), 387–391.

Larsson, A.

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Marom, B.

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Minai, L.

Mollison, P. L.

H. Chaplin and P. L. Mollison, “Correction for plasma trapped in the red cell column of the hematocrit,” Blood 7(12), 1227–1238 (1952).
[PubMed]

Montgomery, L. E. A.

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

Nowicki, A.

W. Secomski, A. Nowicki, and P. Tortoli, “Estimation of hematocrit by means of attenuation measurement of ultrasonic wave in human blood,” in Ultrasonics Symposium,2001IEEE, (2001), 1277–12801272.
[Crossref]

Oshima, S.

S. Oshima and Y. Sankai, “Optical measurement of blood hematocrit on medical tubing with dual wavelength and detector model,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2009), 5891–5896.
[Crossref]

Pop, G. A. M.

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

Quinn, J. G.

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

Roe, S. M.

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

Sankai, Y.

S. Oshima and Y. Sankai, “Optical measurement of blood hematocrit on medical tubing with dual wavelength and detector model,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2009), 5891–5896.
[Crossref]

Secomski, W.

W. Secomski, A. Nowicki, and P. Tortoli, “Estimation of hematocrit by means of attenuation measurement of ultrasonic wave in human blood,” in Ultrasonics Symposium,2001IEEE, (2001), 1277–12801272.
[Crossref]

Steinfelder-Visscher, J.

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

Stove, C. P.

S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
[Crossref] [PubMed]

Stuart, B. J.

B. J. Stuart and A. J. Viera, “Polycythemia vera,” Am. Fam. Physician 69(9), 2139–2144 (2004).
[PubMed]

Tansey, E. A.

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

Teerenstra, S.

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

Tortoli, P.

W. Secomski, A. Nowicki, and P. Tortoli, “Estimation of hematocrit by means of attenuation measurement of ultrasonic wave in human blood,” in Ultrasonics Symposium,2001IEEE, (2001), 1277–12801272.
[Crossref]

Viera, A. J.

B. J. Stuart and A. J. Viera, “Polycythemia vera,” Am. Fam. Physician 69(9), 2139–2144 (2004).
[PubMed]

Vis, J. Y.

J. Y. Vis and A. Huisman, “Verification and quality control of routine hematology analyzers,” Int. J. Lab. Hematol. 38(Suppl 1), 100–109 (2016).
[Crossref] [PubMed]

Weerwind, P. W.

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

Wilk, L. S.

S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
[Crossref] [PubMed]

Yeheskely-Hayon, D.

Yelin, D.

Zeidan, A.

Zhu, H. H.

W. S. Chen, H. H. Zhu, and G.-S. Feng, “Treating leukemia at the risk of inducing severe anemia,” Exp. Hematol. 44(5), 329–331 (2016).
[Crossref] [PubMed]

Adv. Physiol. Educ. (1)

J. G. Quinn, E. A. Tansey, C. D. Johnson, S. M. Roe, and L. E. A. Montgomery, “Blood: tests used to assess the physiological and immunological properties of blood,” Adv. Physiol. Educ. 40(2), 165–175 (2016).
[Crossref] [PubMed]

Am. Fam. Physician (1)

B. J. Stuart and A. J. Viera, “Polycythemia vera,” Am. Fam. Physician 69(9), 2139–2144 (2004).
[PubMed]

Anal. Chem. (1)

S. Capiau, L. S. Wilk, M. C. G. Aalders, and C. P. Stove, “A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy,” Anal. Chem. 88(12), 6538–6546 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Blood (1)

H. Chaplin and P. L. Mollison, “Correction for plasma trapped in the red cell column of the hematocrit,” Blood 7(12), 1227–1238 (1952).
[PubMed]

Exp. Hematol. (1)

W. S. Chen, H. H. Zhu, and G.-S. Feng, “Treating leukemia at the risk of inducing severe anemia,” Exp. Hematol. 44(5), 329–331 (2016).
[Crossref] [PubMed]

Int. J. Blood Res. Disord. (1)

T. K. Gebretsadkan, G. Ambachew, and H. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2, 012 (2015).

Int. J. Lab. Hematol. (1)

J. Y. Vis and A. Huisman, “Verification and quality control of routine hematology analyzers,” Int. J. Lab. Hematol. 38(Suppl 1), 100–109 (2016).
[Crossref] [PubMed]

J. Assoc. Lab. Autom. (1)

D. Heikali and D. Di Carlo, “A Niche for Microfluidics in Portable Hematology Analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[Crossref]

J. Clin. Monit. Comput. (1)

J. Steinfelder-Visscher, P. W. Weerwind, S. Teerenstra, G. A. M. Pop, and R. M. H. J. Brouwer, “Conductivity-Based Hematocrit Measurement During Cardiopulmonary Bypass,” J. Clin. Monit. Comput. 21(1), 7–12 (2007).
[Crossref] [PubMed]

J. Clin. Pathol. (1)

Y. Ben-Yosef, B. Marom, G. Hirshberg, C. D’Souza, A. Larsson, and A. Bransky, “The HemoScreen, a novel haematology analyser for the point of care,” J. Clin. Pathol. 69(8), 720–725 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (8)

H. Billett, “Hemoglobin and Hematocrit,” in Clinical Methods: The History, Physical, and Laboratory Examinations., H. W. Walker, H. K. Hurst, ed. (Butterworths, Boston, 1990).

W. Secomski, A. Nowicki, and P. Tortoli, “Estimation of hematocrit by means of attenuation measurement of ultrasonic wave in human blood,” in Ultrasonics Symposium,2001IEEE, (2001), 1277–12801272.
[Crossref]

A. Lovell, J. C. Hebden, J. C. Goldstone, and M. Cope, “Determination of the transport scattering coefficient of red blood cells,” in BiOS'99 International Biomedical Optics Symposium, (International Society for Optics and Photonics, 1999), 175–182.

C. R. Kjeldsberg, Practical Diagnosis of Hematologic Disorders (ASCP Press, 2000).

S. Oshima and Y. Sankai, “Optical measurement of blood hematocrit on medical tubing with dual wavelength and detector model,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2009), 5891–5896.
[Crossref]

M. Jędrzejewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), (2011), 387–391.

E. F. Treo, D. O. Cervantes, C. J. Felice, M. Tirado, and M. E. Valentinuzzi, “Hematocrit measurement by dielectric spectroscopy,” in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002.Proceedings of the Second Joint, (2002), 1750–1751 vol.1752.

D. Trebbels, R. Zengerle, and D. Hradetzky, “Hematocrit Measurement - A high precision on-line measurement system based on impedance spectroscopy for use in hemodialysis machines,” in World Congress on Medical Physics and Biomedical Engineering,September 7 - 12, 2009,Munich, Germany:Vol. 25/7 Diagnostic and Therapeutic Instrumentation, Clinical Engineering, O. Dössel and W. C. Schlegel, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 247–250.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the in vitro SEFC system. SLD: super-luminescence diode array. L1-L6 – lenses. LP1,2- Linear polarizers. BS – beam splitter. G – transmission grating.
Fig. 2
Fig. 2 SEFC images at different depths without (a) and with (b) crossed polarizers that remove the glass reflection completely but also eliminate the signals from the cells.
Fig. 3
Fig. 3 SEFC images of blood at different depths for different hematocrit levels.
Fig. 4
Fig. 4 (a) Mean images brightness (µ) for different HCT levels and imaging depths. (b) Mean brightness for different HCT levels at z = 14 µm. (c) Measured vs. control HCT of eight blood samples using the best fit equation in (b). (d) Mean image brightness as function of depth for different HCT levels. (e) HCT vs exponential decay rate. Hollow diamonds represent the lowest HCT levels that were excluded from the linear fit. (f) Measured vs. control HCT of eight samples using the decay rate equation in (e). SEE - Standard error of estimate.
Fig. 5
Fig. 5 Standard deviation (a) and coefficient of variation (b) of the SEFC image brightness for different HCT and imaging depths. (c) Measured vs. control HCT of eight samples using the coefficient of variation fit equation for 14 µm imaging depth. SEE- Standard error of estimate.
Fig. 6
Fig. 6 (a) Mean image brightness vs. the coefficient of variation for different HCT levels. The data point corresponding to the shallowest depth (10 µm) is marked by hollow triangles. Depth intervals between neighboring points are 2 µm. (b) Three-dimensional surface representing HCT as function of μ and cv for the 22 μm - 44 μm depth range. (c) Measured vs. control HCT of eight samples using the fit equation in (b) for a single image captured at an arbitrary depth. (d) Same as (c), with averaging over multiple images acquired at different depths with 2 μm intervals. SEE - Standard error of estimate.

Metrics