Abstract

We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm2. Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation

Phong Phan, David Highton, Jonathan Lai, Martin Smith, Clare Elwell, and Ilias Tachtsidis
Biomed. Opt. Express 7(11) 4424-4440 (2016)

Evaluating real-time image reconstruction in diffuse optical tomography using physiologically realistic test data

Sabrina Brigadoi, Samuel Powell, Robert J. Cooper, Laura A. Dempsey, Simon Arridge, Nick Everdell, Jeremy Hebden, and Adam P. Gibson
Biomed. Opt. Express 6(12) 4719-4737 (2015)

Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography

Hamid Dehghani, Brian R. White, Benjamin W. Zeff, Andrew Tizzard, and Joseph P. Culver
Appl. Opt. 48(10) D137-D143 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
    [Crossref] [PubMed]
  2. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9(6), 272–286 (2001).
    [Crossref] [PubMed]
  3. H. Obrig and A. Villringer, “Beyond the Visible--Imaging the Human Brain with Light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).
    [Crossref] [PubMed]
  4. B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
  5. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  6. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
    [Crossref] [PubMed]
  7. L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
    [Crossref] [PubMed]
  8. L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
    [Crossref] [PubMed]
  9. S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
    [Crossref] [PubMed]
  10. C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
    [Crossref] [PubMed]
  11. S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
    [Crossref] [PubMed]
  12. R. J. Cooper, “Bioimaging: Watching the brain at work,” Nat. Photonics 8(6), 425–426 (2014).
    [Crossref]
  13. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
    [Crossref] [PubMed]
  14. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
    [Crossref] [PubMed]
  15. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref] [PubMed]
  16. T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
    [Crossref] [PubMed]
  17. M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
    [Crossref] [PubMed]
  18. J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
    [Crossref] [PubMed]
  19. S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
    [Crossref] [PubMed]
  20. H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
    [Crossref] [PubMed]
  21. J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
    [Crossref]
  22. R. J. Cooper, “Diffuse Optical Imaging Methodologies in the Neonatal Intensive Care Unit,” presented at the OSA BIOMED, 2016, p. OM4C.1.
    [Crossref]
  23. D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
    [Crossref] [PubMed]
  24. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
    [Crossref] [PubMed]
  25. S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
    [PubMed]
  26. V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
    [Crossref]
  27. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
    [Crossref]
  28. M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
    [Crossref] [PubMed]
  29. “Conjugate Gradient Methods,” in Numerical Optimization (Springer New York, 2006), pp. 101–134.
  30. S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
    [Crossref] [PubMed]
  31. J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
    [Crossref] [PubMed]
  32. R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
    [Crossref] [PubMed]
  33. S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: In vivo validation against fMRI,” NeuroImage.

2016 (2)

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

2015 (3)

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

2014 (8)

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

R. J. Cooper, “Bioimaging: Watching the brain at work,” Nat. Photonics 8(6), 425–426 (2014).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

2013 (1)

J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

2012 (4)

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

2011 (1)

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

2010 (2)

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).

R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
[Crossref] [PubMed]

2009 (4)

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

2008 (1)

J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
[Crossref] [PubMed]

2007 (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

2003 (1)

H. Obrig and A. Villringer, “Beyond the Visible--Imaging the Human Brain with Light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).
[Crossref] [PubMed]

2001 (1)

1997 (1)

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

Aasted, C. M.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Abdoulaev, G.

Aflalo, T. N.

J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
[Crossref] [PubMed]

Airantzis, D.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Aljabar, P.

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

Almli, C.

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

Arridge, S.

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

Arridge, S. R.

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

Atsumori, H.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Bae, H. M.

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Barbour, R.

Becerra, L.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Bluestone, A.

Boas, D. A.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

Borsook, D.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Bowtell, R.

R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
[Crossref] [PubMed]

Brigadoi, S.

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

Brühl, R.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Chance, B.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

Chitnis, D.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Choi, J. K.

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Choi, M. G.

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Collins, D.

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

Cooper, R. J.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

R. J. Cooper, “Bioimaging: Watching the brain at work,” Nat. Photonics 8(6), 425–426 (2014).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

Culver, J. P.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Dan, I.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Diamond, S. G.

Dubb, J.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Eggebrecht, A. T.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

Elwell, C. E.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Evans, A.

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

Everdell, N.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Ferradal, S. L.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Ferrari, M.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Fonov, V.

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

Franceschini, M. A.

Francis, S.

R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
[Crossref] [PubMed]

Fukasaku, I.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

Funane, T.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Gagnon, L.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Giagka, V.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Goldenholz, D.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Graziano, M. S. A.

J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
[Crossref] [PubMed]

Grebe, R.

J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

Greve, D. N.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Habermehl, C.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Hassanpour, M.

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hebden, J. C.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hielscher, A.

Highton, D.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Holtze, S.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Huppert, T. J.

Hwang, G.

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Inder, T. E.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Jelzow, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Kasai, Y.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

Kaskhedikar, G.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Kastner, S.

J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
[Crossref] [PubMed]

Katura, T.

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Kiguchi, M.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Kim, J. M.

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Kirilina, E.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Koch, S. P.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Krueger, A.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Kuklisova-Murgasova, M.

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

Kumagai, Y.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

Liao, S. M.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

Maki, A.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

McKinstry, R.

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

Mehnert, J.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Meier, J. D.

J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
[Crossref] [PubMed]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Moghaddam, H.

J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

Nakase, Y.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Ninomiya, A.

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

Obata, A.

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Obrig, H.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

H. Obrig and A. Villringer, “Beyond the Visible--Imaging the Human Brain with Light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).
[Crossref] [PubMed]

Perdue, K.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Perdue, K. L.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

Petkov, M. P.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Phan, P.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Piper, S. K.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Powell, S.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Safaie, J.

J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

Sanchez-Panchuelo, R. M.

R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
[Crossref] [PubMed]

Sato, H.

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Schluppeck, D.

R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
[Crossref] [PubMed]

Schmitz, C.

Schmitz, C. H.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

Schweiger, M.

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

Shiga, T.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

Shimony, J. S.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

Smith, M.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Smyser, C. D.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

Snyder, A. Z.

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Steinbrink, J.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Tachtsidis, I.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Taga, G.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Tanabe, K.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

Tsuzuki, D.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Villringer, A.

H. Obrig and A. Villringer, “Beyond the Visible--Imaging the Human Brain with Light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).
[Crossref] [PubMed]

Wabnitz, H.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Wallois, F.

J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

White, B. R.

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Williams, R.

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Yamamoto, K.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

Yang, J.

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Yücel, M. A.

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Cereb. Cortex (1)

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 320, bhu320 (2015).
[PubMed]

IEEE J. Solid-State Circuits (1)

J. K. Choi, J. M. Kim, G. Hwang, J. Yang, M. G. Choi, and H. M. Bae, “Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging,” IEEE J. Solid-State Circuits 51(2), 484–495 (2016).
[Crossref]

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

J. Biomed. Opt. (3)

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

H. Obrig and A. Villringer, “Beyond the Visible--Imaging the Human Brain with Light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).
[Crossref] [PubMed]

J. Neural Eng. (1)

J. Safaie, R. Grebe, H. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

J. Neurophysiol. (2)

J. D. Meier, T. N. Aflalo, S. Kastner, and M. S. A. Graziano, “Complex organization of human primary motor cortex: a high-resolution fMRI study,” J. Neurophysiol. 100(4), 1800–1812 (2008).
[Crossref] [PubMed]

R. M. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, “Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI,” J. Neurophysiol. 103(5), 2544–2556 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

R. J. Cooper, “Bioimaging: Watching the brain at work,” Nat. Photonics 8(6), 425–426 (2014).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Neuroimage (10)

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

S. Brigadoi, P. Aljabar, M. Kuklisova-Murgasova, S. R. Arridge, and R. J. Cooper, “A 4D neonatal head model for diffuse optical imaging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59(3), 2518–2528 (2012).
[Crossref] [PubMed]

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” Neuroimage 85(Pt 1), 117–126 (2014).
[Crossref] [PubMed]

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” Neuroimage 47(Supplement 1), S102 (2009).
[Crossref]

Neurophotonics (2)

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

C. M. Aasted, M. A. Yücel, R. J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, and D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2(2), 020801 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

H. Atsumori, M. Kiguchi, A. Obata, H. Sato, T. Katura, T. Funane, and A. Maki, “Development of wearable optical topography system for mapping the prefrontal cortex activation,” Rev. Sci. Instrum. 80(4), 043704 (2009).
[Crossref] [PubMed]

M. Kiguchi, H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya, “Note: wearable near-infrared spectroscopy imager for haired region,” Rev. Sci. Instrum. 83(5), 056101 (2012).
[Crossref] [PubMed]

D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, “Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo,” Rev. Sci. Instrum. 87(6), 065112 (2016).
[Crossref] [PubMed]

Other (3)

“Conjugate Gradient Methods,” in Numerical Optimization (Springer New York, 2006), pp. 101–134.

R. J. Cooper, “Diffuse Optical Imaging Methodologies in the Neonatal Intensive Care Unit,” presented at the OSA BIOMED, 2016, p. OM4C.1.
[Crossref]

S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: In vivo validation against fMRI,” NeuroImage.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The uNTS modular DOT system. The module PCB is shown in front (a) and rear (b) views. Panel (c) depicts the array layout created with 4 uNTS modules, with a comparable photograph showing the encapsulated system in (d). Panel (e) shows the approximate arrangement of the 4-module uNTS on the scalp. The normalized array sensitivity, as calculated at 770 nm in a registered head mesh (Subject 4) for all theoretically available channels is shown in panel (f).
Fig. 2
Fig. 2 The raw log (base 10) measured power, averaged over time-points, plotted as a function of source-detector separation in all 5 subjects for 770 nm sources (left) and 855 nm sources (right).
Fig. 3
Fig. 3 The log (base 10) dark-count corrected power, averaged over timepoints and plotted as a function of source-detector separation for all 5 subjects for 770 nm sources (left) and 855 nm sources (right). The estimated noise equivalent power of 370 fW is also depicted as the black dashed line. Note that points below this level are apparent because an average has been taken over time. None of these measurements are used in further analysis.
Fig. 4
Fig. 4 Histograms of all possible channels and accepted channels across all 5 subjects as a function of source-detector separation. Panel a) compares the distribution of all possible channels (green) with that of channels that passed the signal-to-noise pruning process with and SDMratio threshold of 7.5% (blue). Panel b) displays the same but with an SDMratio threshold of 25%. Panel c) displays the same as b), but with additional channels removed due to saturation effects.
Fig. 5
Fig. 5 Selected HRFs for each subject displayed as a function of source-detector separation. The lighter-coloured, shaded areas depict standard error across trials. These channels were selected on the basis that they show the largest increase in HbO of any channel in each source-detector separation range.
Fig. 6
Fig. 6 Volumetric HbO and HbR images at 12 seconds post-stimulus-onset in subject 5. Panel a. provides an indication of the slice locations, while b. and c. show the HbO images in coronal and transverse section and d. and e. show the same for HbR. Note that the response is well localized in the superficial cortex.
Fig. 7
Fig. 7 Normalized and group-averaged, volumetric response images at 12 seconds post-stimulus-onset. Panel a. provides an indication of the slice locations, while b. and c. show the HbO images in coronal and transverse section and d. and e. show the same for HbR. Note that the response is localized in all three dimensions.
Fig. 8
Fig. 8 Grey-matter surface images of HbO and HbR at 12 seconds post-stimulus-onset for all 5 subjects.
Fig. 9
Fig. 9 Normalized and group-averaged grey-matter surface images of HbO and HbR at 12 seconds post-stimulus-onset.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ μ a δ =arg min μ a E( μ a ):= y δ J μ a Γ e 1 2 +λR( μ a ),

Metrics