Abstract

We evaluated several approaches for automatic location of the temporal nerve fiber raphe from standard macular cubes acquired on a Heidelberg Spectralis OCT. Macular cubes with B-scan separation of 96–122 µm were acquired from 15 healthy participants, and “high density” cubes with scan separation of 11 µm were acquired from the same eyes. These latter scans were assigned to experienced graders for subjective location of the raphe, providing the ground truth by which to compare methods operating on the lower density data. A variety of OCT scan parameters and image processing strategies were trialed. Vertically oriented scans, purposeful misalignment of the pupil to avoid reflective artifacts, and the use of intensity as opposed to thickness of the nerve fiber layer were all critical to minimize error. The best performing approach “cFan” involved projection of a fan of lines from each of several locations across the foveal pit; in each fan the line of least average intensity was identified. The centroid of the crossing points of these lines provided the raphe orientation with an average error of 1.5° (max = 4.1°) relative to the human graders. The disc-fovea-raphe angle was 172.4 ± 2.3° (range = 168.5–176.2°), which agrees well with other published estimates.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT

Mitsuro Sugita, Michael Pircher, Stefan Zotter, Bernhard Baumann, Philipp Roberts, Tomoyuki Makihira, Nobuhiro Tomatsu, Makoto Sato, Clemens Vass, and Christoph K. Hitzenberger
Biomed. Opt. Express 6(3) 1030-1054 (2015)

Retinal nerve fiber layer thickness map determined from optical coherence tomography images

Mircea Mujat, Raymond C. Chan, Barry Cense, B. Hyle Park, Chulmin Joo, Taner Akkin, Teresa C. Chen, and Johannes F. de Boer
Opt. Express 13(23) 9480-9491 (2005)

Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender

Christopher Bowd, Linda M. Zangwill, Eytan Z. Blumenthal, Cristiana Vasile, Andreas G. Boehm, Parag A. Gokhale, Kourosh Mohammadi, Payam Amini, Timothy M. Sankary, and Robert N. Weinreb
J. Opt. Soc. Am. A 19(1) 197-207 (2002)

References

  • View by:
  • |
  • |
  • |

  1. F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62(5), 926–938 (1966).
    [Crossref] [PubMed]
  2. D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
    [Crossref] [PubMed]
  3. N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
    [Crossref] [PubMed]
  4. D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
    [Crossref] [PubMed]
  5. A. Turpin, G. P. Sampson, and A. M. McKendrick, “Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map,” Invest. Ophthalmol. Vis. Sci. 50(7), 3249–3256 (2009).
    [Crossref] [PubMed]
  6. A. M. McKendrick, J. Denniss, and A. Turpin, “Structure-function mapping for individuals - why individuals not populations are needed to determine the utility of customising structure-function mapping,” in Association for Research in Vision and Ophthalmology Annual Meeting (Denver Colorado, May 05–07, 2015).
  7. J. Denniss, A. M. McKendrick, and A. Turpin, “An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes,” Invest. Ophthalmol. Vis. Sci. 53(11), 6981–6990 (2012).
    [Crossref] [PubMed]
  8. P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
    [Crossref] [PubMed]
  9. N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
    [Crossref] [PubMed]
  10. Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
    [Crossref] [PubMed]
  11. F. Tanabe, C. Matsumoto, S. Okuyama, S. Takada, T. Numata, T. Kayazawa, M. Eura, S. Hashimoto, E. Koike, and Y. Shimomura, “Imaging of temporal retinal nerve fiber trajectory with Transverse Section Analysis,” in Association for Research in Vision and Ophthalmology Annual Meeting (Orlando Florida, May 04–08, 2014).
  12. B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
    [Crossref] [PubMed]
  13. G. Huang, T. J. Gast, and S. A. Burns, “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).
    [Crossref] [PubMed]
  14. G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
    [Crossref] [PubMed]
  15. J. D’Errico, “Inpaint NaNs,” (2005), MATLAB Central File Exchange: http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans , Accessed Mar 24, 2016.
  16. A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
    [Crossref] [PubMed]

2015 (2)

Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
[Crossref] [PubMed]

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

2014 (3)

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

G. Huang, T. J. Gast, and S. A. Burns, “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).
[Crossref] [PubMed]

2013 (2)

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

2012 (2)

J. Denniss, A. M. McKendrick, and A. Turpin, “An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes,” Invest. Ophthalmol. Vis. Sci. 53(11), 6981–6990 (2012).
[Crossref] [PubMed]

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

2009 (2)

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

A. Turpin, G. P. Sampson, and A. M. McKendrick, “Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map,” Invest. Ophthalmol. Vis. Sci. 50(7), 3249–3256 (2009).
[Crossref] [PubMed]

2000 (1)

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

1966 (1)

F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62(5), 926–938 (1966).
[Crossref] [PubMed]

Airaksinen, P. J.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Amini, N.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Budde, W. M.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Burgoyne, C. F.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Burns, S. A.

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

G. Huang, T. J. Gast, and S. A. Burns, “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).
[Crossref] [PubMed]

Caprioli, J.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Chang, T.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Chauhan, B. C.

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Chopra, V.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Chou, T.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Cirineo, N.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Coleman, A. L.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

de Moraes, C. G. V.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Denniss, J.

J. Denniss, A. M. McKendrick, and A. Turpin, “An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes,” Invest. Ophthalmol. Vis. Sci. 53(11), 6981–6990 (2012).
[Crossref] [PubMed]

Fitzke, F. W.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Francis, B. A.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Garway-Heath, D. F.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Gast, T. J.

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

G. Huang, T. J. Gast, and S. A. Burns, “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).
[Crossref] [PubMed]

Henry, S.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Hitchings, R. A.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Hood, D. C.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Huang, D.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Huang, G.

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

G. Huang, T. J. Gast, and S. A. Burns, “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).
[Crossref] [PubMed]

Hutchison, D. M.

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

Jansonius, N. M.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Jonas, J. B.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Kim, H. C.

Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
[Crossref] [PubMed]

Kim, Y. K.

Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
[Crossref] [PubMed]

Lagrèze, W. A.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Le, P. V.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Levin, L. A.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Liebmann, J. M.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Luo, T.

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

Malinovsky, V. E.

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

McKendrick, A. M.

J. Denniss, A. M. McKendrick, and A. Turpin, “An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes,” Invest. Ophthalmol. Vis. Sci. 53(11), 6981–6990 (2012).
[Crossref] [PubMed]

A. Turpin, G. P. Sampson, and A. M. McKendrick, “Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map,” Invest. Ophthalmol. Vis. Sci. 50(7), 3249–3256 (2009).
[Crossref] [PubMed]

Nevalainen, J.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Nicolela, M. T.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Nouri-Mahdavi, K.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Nowroozizadeh, S.

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

Paetzold, J.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Park, K. H.

Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
[Crossref] [PubMed]

Poinoosawmy, D.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Ragab, O.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Raza, A. S.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Reis, A. S.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Ritch, R.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Sample, P. A.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Sampson, G. P.

A. Turpin, G. P. Sampson, and A. M. McKendrick, “Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map,” Invest. Ophthalmol. Vis. Sci. 50(7), 3249–3256 (2009).
[Crossref] [PubMed]

Schiefer, U.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Selig, B.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Sharpe, G. P.

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Swanson, W. H.

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

Tan, O.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Turpin, A.

J. Denniss, A. M. McKendrick, and A. Turpin, “An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes,” Invest. Ophthalmol. Vis. Sci. 53(11), 6981–6990 (2012).
[Crossref] [PubMed]

A. Turpin, G. P. Sampson, and A. M. McKendrick, “Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map,” Invest. Ophthalmol. Vis. Sci. 50(7), 3249–3256 (2009).
[Crossref] [PubMed]

Varma, R.

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

Vonthein, R.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Vrabec, F.

F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62(5), 926–938 (1966).
[Crossref] [PubMed]

Yang, H.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Yoo, B. W.

Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
[Crossref] [PubMed]

Zangwill, L. M.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62(5), 926–938 (1966).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

A. Turpin, G. P. Sampson, and A. M. McKendrick, “Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map,” Invest. Ophthalmol. Vis. Sci. 50(7), 3249–3256 (2009).
[Crossref] [PubMed]

J. Denniss, A. M. McKendrick, and A. Turpin, “An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes,” Invest. Ophthalmol. Vis. Sci. 53(11), 6981–6990 (2012).
[Crossref] [PubMed]

P. V. Le, O. Tan, V. Chopra, B. A. Francis, O. Ragab, R. Varma, and D. Huang, “Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(6), 4287–4295 (2013).
[Crossref] [PubMed]

N. Amini, S. Nowroozizadeh, N. Cirineo, S. Henry, T. Chang, T. Chou, A. L. Coleman, J. Caprioli, and K. Nouri-Mahdavi, “Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination,” Invest. Ophthalmol. Vis. Sci. 55(11), 7332–7342 (2014).
[Crossref] [PubMed]

G. Huang, T. J. Gast, and S. A. Burns, “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).
[Crossref] [PubMed]

G. Huang, T. Luo, T. J. Gast, S. A. Burns, V. E. Malinovsky, and W. H. Swanson, “Imaging Glaucomatous Damage Across the Temporal Raphe,” Invest. Ophthalmol. Vis. Sci. 56(6), 3496–3504 (2015).
[Crossref] [PubMed]

Ophthalmology (4)

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology 119(4), 738–747 (2012).
[Crossref] [PubMed]

Y. K. Kim, B. W. Yoo, H. C. Kim, and K. H. Park, “Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map,” Ophthalmology 122(11), 2252–2260 (2015).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Vision Res. (1)

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Other (3)

A. M. McKendrick, J. Denniss, and A. Turpin, “Structure-function mapping for individuals - why individuals not populations are needed to determine the utility of customising structure-function mapping,” in Association for Research in Vision and Ophthalmology Annual Meeting (Denver Colorado, May 05–07, 2015).

F. Tanabe, C. Matsumoto, S. Okuyama, S. Takada, T. Numata, T. Kayazawa, M. Eura, S. Hashimoto, E. Koike, and Y. Shimomura, “Imaging of temporal retinal nerve fiber trajectory with Transverse Section Analysis,” in Association for Research in Vision and Ophthalmology Annual Meeting (Orlando Florida, May 04–08, 2014).

J. D’Errico, “Inpaint NaNs,” (2005), MATLAB Central File Exchange: http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans , Accessed Mar 24, 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Small differences in the raphe, or axis of symmetry between superior and inferior visual fields, can have a large impact on the mapping of certain visual field test locations to anatomical tissue. a) Shows the definition of angles described in this paper, where Fo indicates the fovea, Di the disc (or more properly, the blind spot), FoDi the angle between fovea and disc, and FoDiRaph the angle between fovea, disc and temporal raphe. Panels (b), (c) and (d) show the commonly used 24-2 visual field pattern with 3 different FoDi angles, each with 3 definitions of the FoRaph angle: R1 always has the raphe horizontal (FoRaph = 180° + FoDi); R2 continues the line form Di to Fo (FoRaph = 180°); and R3 has FoRaph = 172°, which is close to the population average.

Fig. 2
Fig. 2

Example of data acquisition and automated localization of the temporal raphe in two subjects. a) IR SLO image of the fundus for the subject of a, b and c. Vertical lines: location of B-scans used to generate image shown in c. b) High resolution en face OCT image of B-scan intensity at the RNFL, used for human grading. Image generated from two sets of high-resolution, overlapping scans. An area of dark (and thinned) nerve fiber layer extends temporally from the fovea, which we take to be the temporal raphe. A much lower resolution version of this area is evident in c. c) Similar to b, but with data obtained from a standard macular cube which has more widely spaced scans. Red line: example of an automated attempt to define the fovea-raphe angle. d) Similar to b but obtained from a different subject with a particularly reflective fundus. Large reflective patches (arrow) obscure much of the temporal raphe.

Fig. 3
Fig. 3

“DeltaRef” approach for automated identification of reflective artifacts at the temporal nerve fiber raphe. a) Shows an en face intensity image at the level of the ILM; b) shows an en face intensity image averaged over the NFL; c) shows the difference between these images. The center of the fovea is marked with a cross – tissue within 0.75 mm of this point was excluded (black rectangle). The influence of reflections was calculated in a region of interest indicated by the green dashed lines; d) DeltaRef statistic, which shows skewness of the region of interest in the difference image, is plotted against manual classification of image reflections. A skewness of ~1.0 is a common rule of thumb which appears to be a reasonable criterion for triage of image quality to minimize reflective artifacts.

Fig. 4
Fig. 4

Illustration of methods evaluated for automatic determination of temporal raphe angle. In each method, fans of lines (blue) are traced from a point in the foveal pit (f) and a “minimal line” is determined; that is, the line in each fan which encounters the minimum average intensity (examples in green) or thickness. For the “fov” algorithm, the raphe is the minimal line stemming from the fovea. For “opt”, the raphe is the minimum of all minimal lines. For “med” (not illustrated), the median of the minimal lines is determined. For “cFan”, the intersections of each minimal line with each other minimal line are found, and the centroid of these crossing points (yellow circle) is taken to lie along the raphe.

Fig. 5
Fig. 5

Algorithm performance for HD (left) and LD image (right) from subject with highest error. Red lines show algorithm, yellow spots show one of our grader’s labels. Black bar in left image resulted from non-overlapping scans. The LD image has some error but it is hard to fault it based on this image alone; intensity artifacts due to the low spatial sampling appear to be the limiting factor.

Fig. 6
Fig. 6

Assessment of systematic bias of cFan algorithm. a) Plotted as a function of ground truth FoDiRaph angle determined from average of 3 grader estimates. b) Plotted as a function of FoDi angle as returned from the Spectralis device. No significant bias is apparent in either case.

Tables (2)

Tables Icon

Table 1 Mean absolute difference between the angle estimated by each algorithm (column headings) and the mean of 3 human graders (degrees). The smallest value for each scan type is shown in bold.

Tables Icon

Table 2 Maximum absolute difference between the angle estimated by each algorithm (column headings) and the mean of 3 human graders (degrees). The smallest value for each scan type is shown in bold.

Metrics