Abstract

Optical density (OD) measurements are the standard approach used in microbiology for characterizing bacteria concentrations in culture media. OD is based on measuring the optical absorbance of a sample at a single wavelength, and any error will propagate through all calculations, leading to reproducibility issues. Here, we use the conventional OD technique to measure the growth rates of two different species of bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. The same samples are also analyzed over the entire UV-Vis wavelength spectrum, allowing a distinctly different strategy for data analysis to be performed. Specifically, instead of only analyzing a single wavelength, a multi-wavelength normalization process is implemented. When the OD method is used, the detected signal does not follow the log growth curve. In contrast, the multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Principal component analysis of fluorescence changes upon growth conditions and washing of Pseudomonas aeruginosa

Ekta Jhala, Craig Galilee, and Lou Reinisch
Appl. Opt. 46(22) 5522-5528 (2007)

Automated bacterial identification by angle resolved dark-field imaging

Benjamin K. Wilson and Genevieve D. Vigil
Biomed. Opt. Express 4(9) 1692-1701 (2013)

Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth

Jie Shao, Jindong Xiang, Ove Axner, and Chaofu Ying
Appl. Opt. 55(9) 2339-2345 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Ede, L. M. Hafner, and P. M. Fredericks, “Structural changes in the cells of some bacteria during population growth: a Fourier transform infrared-attenuated total reflectance study,” Appl. Spectrosc. 58(3), 317–322 (2004).
    [Crossref] [PubMed]
  2. M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
    [Crossref] [PubMed]
  3. K. S. Kim and B. F. Anthony, “Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin,” Antimicrob. Agents Chemother. 19(6), 1075–1077 (1981).
    [Crossref] [PubMed]
  4. C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
    [Crossref] [PubMed]
  5. D. K. Button and B. R. Robertson, “Determination of DNA content of aquatic bacteria by flow cytometry,” Appl. Environ. Microbiol. 67(4), 1636–1645 (2001).
    [Crossref] [PubMed]
  6. R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
    [Crossref] [PubMed]
  7. A. Berrier, M. C. Schaafsma, G. Nonglaton, J. Bergquist, and J. G. Rivas, “Selective detection of bacterial layers with terahertz plasmonic antennas,” Biomed. Opt. Express 3(11), 2937–2949 (2012).
    [Crossref] [PubMed]
  8. K. Hamasha, Q. I. Mohaidat, R. A. Putnam, R. C. Woodman, S. Palchaudhuri, and S. J. Rehse, “Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy-a comparison of two multivariate analysis techniques,” Biomed. Opt. Express 4(4), 481–489 (2013).
    [Crossref] [PubMed]
  9. Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. Park, “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23(12), 15792–15805 (2015).
    [Crossref] [PubMed]
  10. G. B. Jung, S. W. Nam, S. Choi, G. J. Lee, and H. K. Park, “Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis,” Biomed. Opt. Express 5(9), 3238–3251 (2014).
    [Crossref] [PubMed]
  11. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344–5355 (2012).
    [Crossref] [PubMed]
  12. G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
    [Crossref] [PubMed]
  13. Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
    [Crossref] [PubMed]
  14. H. Xiao and S. P. Levine, “Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors,” Anal. Chem. 65(17), 2262–2269 (1993).
    [Crossref] [PubMed]
  15. P. Naik and E. J. D’Sa, “Phytoplankton light absorption of cultures and natural samples: comparisons using two spectrophotometers,” Opt. Express 20(5), 4871–4886 (2012).
    [Crossref] [PubMed]
  16. J. A. Myers, B. S. Curtis, and W. R. Curtis, “Improving accuracy of cell and chromophore concentration measurements using optical density,” BMC Biophys. 6(1), 4 (2013).
    [Crossref] [PubMed]
  17. J. Shao, J. Xiang, O. Axner, and C. Ying, “Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth,” Appl. Opt. 55(9), 2339–2345 (2016).
    [Crossref] [PubMed]
  18. E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
    [Crossref] [PubMed]
  19. M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
    [Crossref] [PubMed]
  20. B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
    [Crossref] [PubMed]
  21. T. Strateva and D. Yordanov, “Pseudomonas aeruginosa - a phenomenon of bacterial resistance,” J. Med. Microbiol. 58(9), 1133–1148 (2009).
    [Crossref] [PubMed]
  22. D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
    [Crossref] [PubMed]
  23. E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends Microbiol. 19(8), 419–426 (2011).
    [Crossref] [PubMed]
  24. J. C. Pechère and T. Köhler, “Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa,” Clin. Microbiol. Infect. 5(Suppl 1), S15–S18 (1999).
    [Crossref] [PubMed]
  25. J. E. McGowan., “Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum,” Am. J. Med. 119(6Suppl 1), S29–S70 (2006).
    [Crossref] [PubMed]
  26. R. H. Deurenberg and E. E. Stobberingh, “The evolution of Staphylococcus aureus,” Infect. Genet. Evol. 8(6), 747–763 (2008).
    [Crossref] [PubMed]
  27. M. Otto, “Staphylococcus aureus toxins,” Curr. Opin. Microbiol. 17, 32–37 (2014).
    [Crossref] [PubMed]
  28. J. A. Lindsay and M. T. G. Holden, “Staphylococcus aureus: superbug, super genome?” Trends Microbiol. 12(8), 378–385 (2004).
    [Crossref] [PubMed]
  29. P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clin. Microbiol. Rev. 22(4), 582–610 (2009).
    [Crossref] [PubMed]
  30. F. D. Lowy, “Staphylococcus aureus infections,” N. Engl. J. Med. 339(8), 520–532 (1998).
    [Crossref] [PubMed]
  31. R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
    [Crossref] [PubMed]
  32. L. G. Harris, S. J. Foster, and R. G. Richards, “An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review,” Eur. Cell. Mater. 4, 39–60 (2002).
    [PubMed]
  33. G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol. 16(3-4), 223–228 (1996).
    [Crossref] [PubMed]
  34. I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
    [Crossref] [PubMed]
  35. J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
    [Crossref] [PubMed]
  36. J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
    [Crossref] [PubMed]
  37. L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
    [Crossref] [PubMed]

2016 (2)

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

J. Shao, J. Xiang, O. Axner, and C. Ying, “Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth,” Appl. Opt. 55(9), 2339–2345 (2016).
[Crossref] [PubMed]

2015 (2)

G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
[Crossref] [PubMed]

Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. Park, “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23(12), 15792–15805 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
[Crossref] [PubMed]

K. Hamasha, Q. I. Mohaidat, R. A. Putnam, R. C. Woodman, S. Palchaudhuri, and S. J. Rehse, “Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy-a comparison of two multivariate analysis techniques,” Biomed. Opt. Express 4(4), 481–489 (2013).
[Crossref] [PubMed]

J. A. Myers, B. S. Curtis, and W. R. Curtis, “Improving accuracy of cell and chromophore concentration measurements using optical density,” BMC Biophys. 6(1), 4 (2013).
[Crossref] [PubMed]

2012 (5)

R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
[Crossref] [PubMed]

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

P. Naik and E. J. D’Sa, “Phytoplankton light absorption of cultures and natural samples: comparisons using two spectrophotometers,” Opt. Express 20(5), 4871–4886 (2012).
[Crossref] [PubMed]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344–5355 (2012).
[Crossref] [PubMed]

A. Berrier, M. C. Schaafsma, G. Nonglaton, J. Bergquist, and J. G. Rivas, “Selective detection of bacterial layers with terahertz plasmonic antennas,” Biomed. Opt. Express 3(11), 2937–2949 (2012).
[Crossref] [PubMed]

2011 (3)

J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
[Crossref] [PubMed]

C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
[Crossref] [PubMed]

E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends Microbiol. 19(8), 419–426 (2011).
[Crossref] [PubMed]

2010 (2)

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

2009 (2)

P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clin. Microbiol. Rev. 22(4), 582–610 (2009).
[Crossref] [PubMed]

T. Strateva and D. Yordanov, “Pseudomonas aeruginosa - a phenomenon of bacterial resistance,” J. Med. Microbiol. 58(9), 1133–1148 (2009).
[Crossref] [PubMed]

2008 (2)

R. H. Deurenberg and E. E. Stobberingh, “The evolution of Staphylococcus aureus,” Infect. Genet. Evol. 8(6), 747–763 (2008).
[Crossref] [PubMed]

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

2006 (1)

J. E. McGowan., “Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum,” Am. J. Med. 119(6Suppl 1), S29–S70 (2006).
[Crossref] [PubMed]

2004 (3)

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

S. M. Ede, L. M. Hafner, and P. M. Fredericks, “Structural changes in the cells of some bacteria during population growth: a Fourier transform infrared-attenuated total reflectance study,” Appl. Spectrosc. 58(3), 317–322 (2004).
[Crossref] [PubMed]

J. A. Lindsay and M. T. G. Holden, “Staphylococcus aureus: superbug, super genome?” Trends Microbiol. 12(8), 378–385 (2004).
[Crossref] [PubMed]

2002 (2)

L. G. Harris, S. J. Foster, and R. G. Richards, “An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review,” Eur. Cell. Mater. 4, 39–60 (2002).
[PubMed]

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
[Crossref] [PubMed]

2001 (1)

D. K. Button and B. R. Robertson, “Determination of DNA content of aquatic bacteria by flow cytometry,” Appl. Environ. Microbiol. 67(4), 1636–1645 (2001).
[Crossref] [PubMed]

1999 (2)

J. C. Pechère and T. Köhler, “Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa,” Clin. Microbiol. Infect. 5(Suppl 1), S15–S18 (1999).
[Crossref] [PubMed]

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

1998 (2)

F. D. Lowy, “Staphylococcus aureus infections,” N. Engl. J. Med. 339(8), 520–532 (1998).
[Crossref] [PubMed]

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

1996 (1)

G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol. 16(3-4), 223–228 (1996).
[Crossref] [PubMed]

1993 (1)

H. Xiao and S. P. Levine, “Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors,” Anal. Chem. 65(17), 2262–2269 (1993).
[Crossref] [PubMed]

1981 (1)

K. S. Kim and B. F. Anthony, “Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin,” Antimicrob. Agents Chemother. 19(6), 1075–1077 (1981).
[Crossref] [PubMed]

Alston, M.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Anthony, B. F.

K. S. Kim and B. F. Anthony, “Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin,” Antimicrob. Agents Chemother. 19(6), 1075–1077 (1981).
[Crossref] [PubMed]

Axner, O.

Baranyi, J.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Bergquist, J.

Berrier, A.

Betts, R. P.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Biesta-Peters, E. G.

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

Bille, J.

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

Black, C. B.

C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
[Crossref] [PubMed]

Blanc, D. S.

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

Branny, P.

J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
[Crossref] [PubMed]

Breidenstein, E. B. M.

E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends Microbiol. 19(8), 419–426 (2011).
[Crossref] [PubMed]

Brown, M. R. W.

G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol. 16(3-4), 223–228 (1996).
[Crossref] [PubMed]

Button, D. K.

D. K. Button and B. R. Robertson, “Determination of DNA content of aquatic bacteria by flow cytometry,” Appl. Environ. Microbiol. 67(4), 1636–1645 (2001).
[Crossref] [PubMed]

Cameron, A. D. S.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Chinnappan, R.

Choi, S.

Chun, S. H.

G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
[Crossref] [PubMed]

Connon, S. A.

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
[Crossref] [PubMed]

Costerton, J. W.

G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol. 16(3-4), 223–228 (1996).
[Crossref] [PubMed]

Critchley, I.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Curtis, B. S.

J. A. Myers, B. S. Curtis, and W. R. Curtis, “Improving accuracy of cell and chromophore concentration measurements using optical density,” BMC Biophys. 6(1), 4 (2013).
[Crossref] [PubMed]

Curtis, W. R.

J. A. Myers, B. S. Curtis, and W. R. Curtis, “Improving accuracy of cell and chromophore concentration measurements using optical density,” BMC Biophys. 6(1), 4 (2013).
[Crossref] [PubMed]

D’Sa, E. J.

Dai, L.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

de la Fuente-Núñez, C.

E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends Microbiol. 19(8), 419–426 (2011).
[Crossref] [PubMed]

Deng, X.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Deurenberg, R. H.

R. H. Deurenberg and E. E. Stobberingh, “The evolution of Staphylococcus aureus,” Infect. Genet. Evol. 8(6), 747–763 (2008).
[Crossref] [PubMed]

Dmitriev, B. A.

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

Domingue, G.

G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol. 16(3-4), 223–228 (1996).
[Crossref] [PubMed]

Dong, J.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Duensing, T. D.

C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
[Crossref] [PubMed]

Dunlay, R. T.

C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
[Crossref] [PubMed]

Ede, S. M.

Ehlers, S.

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

Feng, H.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Foster, S. J.

L. G. Harris, S. J. Foster, and R. G. Richards, “An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review,” Eur. Cell. Mater. 4, 39–60 (2002).
[PubMed]

Francioli, P.

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

Fredericks, P. M.

Giokarini, T.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Giovannoni, S. J.

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
[Crossref] [PubMed]

Goldová, J.

J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
[Crossref] [PubMed]

Gorris, L. G.

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

Haagensen, J. A. J.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Hafner, L. M.

Hamasha, K.

Hancock, R. E. W.

E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends Microbiol. 19(8), 419–426 (2011).
[Crossref] [PubMed]

Hanson, N. D.

P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clin. Microbiol. Rev. 22(4), 582–610 (2009).
[Crossref] [PubMed]

Harris, L. G.

L. G. Harris, S. J. Foster, and R. G. Richards, “An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review,” Eur. Cell. Mater. 4, 39–60 (2002).
[PubMed]

Hayes, A. J.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Hazan, R.

R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
[Crossref] [PubMed]

Heo, G.

G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
[Crossref] [PubMed]

Hercík, K.

J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
[Crossref] [PubMed]

Hinton, J. C. D.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Høiby, N.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Holden, M. T. G.

J. A. Lindsay and M. T. G. Holden, “Staphylococcus aureus: superbug, super genome?” Trends Microbiol. 12(8), 378–385 (2004).
[Crossref] [PubMed]

Holst, O.

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

Janin, B.

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

Jelsbak, L.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Jepras, R.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Jiang, Y.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Jo, Y.

Johansen, H. K.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Joosten, H.

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

Jung, G. B.

Jung, J.

Kang, S. J.

Kashima, S.

R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
[Crossref] [PubMed]

Kim, K. S.

K. S. Kim and B. F. Anthony, “Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin,” Antimicrob. Agents Chemother. 19(6), 1075–1077 (1981).
[Crossref] [PubMed]

Kim, M. H.

Kim, Y. S.

G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
[Crossref] [PubMed]

Köhler, T.

J. C. Pechère and T. Köhler, “Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa,” Clin. Microbiol. Infect. 5(Suppl 1), S15–S18 (1999).
[Crossref] [PubMed]

Kurasaki, M.

R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
[Crossref] [PubMed]

Lee, G. J.

Levine, S. P.

H. Xiao and S. P. Levine, “Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors,” Anal. Chem. 65(17), 2262–2269 (1993).
[Crossref] [PubMed]

Li, P.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Lin, M.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Lindsay, J. A.

J. A. Lindsay and M. T. G. Holden, “Staphylococcus aureus: superbug, super genome?” Trends Microbiol. 12(8), 378–385 (2004).
[Crossref] [PubMed]

Lister, P. D.

P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clin. Microbiol. Rev. 22(4), 582–610 (2009).
[Crossref] [PubMed]

Lloyd, D.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Lowy, F. D.

F. D. Lowy, “Staphylococcus aureus infections,” N. Engl. J. Med. 339(8), 520–532 (1998).
[Crossref] [PubMed]

Lu, J.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Lucchini, S.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Markov, A.

Masuma, R.

R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
[Crossref] [PubMed]

Maura, D.

R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
[Crossref] [PubMed]

Mazhorova, A.

McGowan, J. E.

J. E. McGowan., “Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum,” Am. J. Med. 119(6Suppl 1), S29–S70 (2006).
[Crossref] [PubMed]

Mohaidat, Q. I.

Molin, S.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Myers, J. A.

J. A. Myers, B. S. Curtis, and W. R. Curtis, “Improving accuracy of cell and chromophore concentration measurements using optical density,” BMC Biophys. 6(1), 4 (2013).
[Crossref] [PubMed]

Naik, P.

Nam, S. W.

Newman, M.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Ng, A.

Nonglaton, G.

Okuno, T.

R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
[Crossref] [PubMed]

Otto, M.

M. Otto, “Staphylococcus aureus toxins,” Curr. Opin. Microbiol. 17, 32–37 (2014).
[Crossref] [PubMed]

Palchaudhuri, S.

Pan, X.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Park, H.

Park, H. K.

Park, Y.

Paul, F.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Pechère, J. C.

J. C. Pechère and T. Köhler, “Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa,” Clin. Microbiol. Infect. 5(Suppl 1), S15–S18 (1999).
[Crossref] [PubMed]

Peck, M. W.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Petignat, C.

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

Pin, C.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Putnam, R. A.

Qiu, J.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Que, Y. A.

R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
[Crossref] [PubMed]

Rahme, L. G.

R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
[Crossref] [PubMed]

Randerson, P. F.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Rappé, M. S.

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
[Crossref] [PubMed]

Rehse, S. J.

Reij, M. W.

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

Rice, C. J.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Richards, R. G.

L. G. Harris, S. J. Foster, and R. G. Richards, “An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review,” Eur. Cell. Mater. 4, 39–60 (2002).
[PubMed]

Rietschel, E. T.

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

Rivas, J. G.

Robertson, B. R.

D. K. Button and B. R. Robertson, “Determination of DNA content of aquatic bacteria by flow cytometry,” Appl. Environ. Microbiol. 67(4), 1636–1645 (2001).
[Crossref] [PubMed]

Rolfe, M. D.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Schaafsma, M. C.

Seong, M. J.

G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
[Crossref] [PubMed]

Shao, J.

Skorobogata, O.

Skorobogatiy, M.

Song, F.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Song, Q.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Sternberg, C.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Stobberingh, E. E.

R. H. Deurenberg and E. E. Stobberingh, “The evolution of Staphylococcus aureus,” Infect. Genet. Evol. 8(6), 747–763 (2008).
[Crossref] [PubMed]

Strateva, T.

T. Strateva and D. Yordanov, “Pseudomonas aeruginosa - a phenomenon of bacterial resistance,” J. Med. Microbiol. 58(9), 1133–1148 (2009).
[Crossref] [PubMed]

Stringer, M. F.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Tan, Q.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Thompson, A.

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

Toukach, F. V.

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

Trinkle, L. S.

C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
[Crossref] [PubMed]

Ulrych, A.

J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
[Crossref] [PubMed]

Venables, W. A.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Vergin, K. L.

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
[Crossref] [PubMed]

Wan, X.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Wan, Y.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Wang, D.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Wang, H.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Wang, Y.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Warrack, J.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Williams, I.

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

Wolter, D. J.

P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clin. Microbiol. Rev. 22(4), 582–610 (2009).
[Crossref] [PubMed]

Woodman, R. C.

Xia, L.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Xiang, H.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Xiang, J.

Xiao, H.

H. Xiao and S. P. Levine, “Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors,” Anal. Chem. 65(17), 2262–2269 (1993).
[Crossref] [PubMed]

Xu, X.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Yang, L.

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

Ying, C.

Yordanov, D.

T. Strateva and D. Yordanov, “Pseudomonas aeruginosa - a phenomenon of bacterial resistance,” J. Med. Microbiol. 58(9), 1133–1148 (2009).
[Crossref] [PubMed]

Yu, L.

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Zhang, K.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Zourob, M.

Zwietering, M. H.

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

Am. J. Med. (1)

J. E. McGowan., “Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum,” Am. J. Med. 119(6Suppl 1), S29–S70 (2006).
[Crossref] [PubMed]

Anal. Chem. (1)

H. Xiao and S. P. Levine, “Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors,” Anal. Chem. 65(17), 2262–2269 (1993).
[Crossref] [PubMed]

Antimicrob. Agents Chemother. (1)

K. S. Kim and B. F. Anthony, “Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin,” Antimicrob. Agents Chemother. 19(6), 1075–1077 (1981).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (2)

D. K. Button and B. R. Robertson, “Determination of DNA content of aquatic bacteria by flow cytometry,” Appl. Environ. Microbiol. 67(4), 1636–1645 (2001).
[Crossref] [PubMed]

E. G. Biesta-Peters, M. W. Reij, H. Joosten, L. G. Gorris, and M. H. Zwietering, “Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus,” Appl. Environ. Microbiol. 76(5), 1399–1405 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Assay Drug Dev. Technol. (1)

C. B. Black, T. D. Duensing, L. S. Trinkle, and R. T. Dunlay, “Cell-based screening using high-throughput flow cytometry,” Assay Drug Dev. Technol. 9(1), 13–20 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

BMC Biophys. (1)

J. A. Myers, B. S. Curtis, and W. R. Curtis, “Improving accuracy of cell and chromophore concentration measurements using optical density,” BMC Biophys. 6(1), 4 (2013).
[Crossref] [PubMed]

BMC Genomics (1)

J. Goldová, A. Ulrych, K. Hercík, and P. Branny, “A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence,” BMC Genomics 12(1), 437 (2011).
[Crossref] [PubMed]

BMC Microbiol. (1)

R. Hazan, Y. A. Que, D. Maura, and L. G. Rahme, “A method for high throughput determination of viable bacteria cell counts in 96-well plates,” BMC Microbiol. 12(1), 259–265 (2012).
[Crossref] [PubMed]

Clin. Microbiol. Infect. (2)

D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, “Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study,” Clin. Microbiol. Infect. 4(5), 242–247 (1998).
[Crossref] [PubMed]

J. C. Pechère and T. Köhler, “Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa,” Clin. Microbiol. Infect. 5(Suppl 1), S15–S18 (1999).
[Crossref] [PubMed]

Clin. Microbiol. Rev. (1)

P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clin. Microbiol. Rev. 22(4), 582–610 (2009).
[Crossref] [PubMed]

Curr. Opin. Microbiol. (1)

M. Otto, “Staphylococcus aureus toxins,” Curr. Opin. Microbiol. 17, 32–37 (2014).
[Crossref] [PubMed]

Eur. Cell. Mater. (1)

L. G. Harris, S. J. Foster, and R. G. Richards, “An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review,” Eur. Cell. Mater. 4, 39–60 (2002).
[PubMed]

FEMS Immunol. Med. Microbiol. (1)

G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol. 16(3-4), 223–228 (1996).
[Crossref] [PubMed]

Infect. Genet. Evol. (1)

R. H. Deurenberg and E. E. Stobberingh, “The evolution of Staphylococcus aureus,” Infect. Genet. Evol. 8(6), 747–763 (2008).
[Crossref] [PubMed]

J. Bacteriol. (3)

L. Yang, J. A. J. Haagensen, L. Jelsbak, H. K. Johansen, C. Sternberg, N. Høiby, and S. Molin, “In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections,” J. Bacteriol. 190(8), 2767–2776 (2008).
[Crossref] [PubMed]

M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” J. Bacteriol. 194(3), 686–701 (2012).
[Crossref] [PubMed]

B. A. Dmitriev, F. V. Toukach, O. Holst, E. T. Rietschel, and S. Ehlers, “Tertiary structure of Staphylococcus aureus cell wall murein,” J. Bacteriol. 186(21), 7141–7148 (2004).
[Crossref] [PubMed]

J. Med. Microbiol. (1)

T. Strateva and D. Yordanov, “Pseudomonas aeruginosa - a phenomenon of bacterial resistance,” J. Med. Microbiol. 58(9), 1133–1148 (2009).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

R. Masuma, S. Kashima, M. Kurasaki, and T. Okuno, “Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells,” J. Photochem. Photobiol. B 125, 202–208 (2013).
[Crossref] [PubMed]

Microbiology (1)

I. Williams, F. Paul, D. Lloyd, R. Jepras, I. Critchley, M. Newman, J. Warrack, T. Giokarini, A. J. Hayes, P. F. Randerson, and W. A. Venables, “Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture,” Microbiology 145(6), 1325–1333 (1999).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

F. D. Lowy, “Staphylococcus aureus infections,” N. Engl. J. Med. 339(8), 520–532 (1998).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

G. Heo, Y. S. Kim, S. H. Chun, and M. J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett. 10(1), 45 (2015).
[Crossref] [PubMed]

Nature (1)

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature 418(6898), 630–633 (2002).
[Crossref] [PubMed]

Opt. Express (3)

PLoS One (1)

J. Qiu, D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu, and X. Deng, “Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates,” PLoS One 5(3), e9736 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref] [PubMed]

Trends Microbiol. (2)

E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends Microbiol. 19(8), 419–426 (2011).
[Crossref] [PubMed]

J. A. Lindsay and M. T. G. Holden, “Staphylococcus aureus: superbug, super genome?” Trends Microbiol. 12(8), 378–385 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Rendering of S. aureus, b) Rendering of P. aeruginosa, c) Optical image of four different clinical S. aureus strains grown on blood agar plate.

Fig. 2
Fig. 2

a) UV-Vis spectra for S. aureus strain HH49. Arrows indicate wavelengths chosen for subsequent analysis. b) UV-Vis measurements at wavelengths of interest plotted at select intervals over time. c) OD600 measurements plotted at select intervals over time. Error bars are shown for b) and c); however, the error is so small that the error bars are smaller than the symbols.

Fig. 3
Fig. 3

Change in absorbance over time for seven wavelengths, including 600 nm, exhibiting significant or little change. The specific bacteria plotted are: a) S. aureus, HH36 strain, b) S. aureus, HH49 strain, c) S. aureus, KH38 strain, d) S. aureus, LAC91 strain, and e) P. aeruginosa, PA01 strain. Error bars are shown on each plot; however, the error is so small that the error bars are smaller than the symbols.

Fig. 4
Fig. 4

Wavelength-normalized absorbance and OD600 for each strain plotted as a function of time. The specific bacteria plotted are: a) S. aureus, HH36 strain, b) S. aureus, HH49 strain, c) S. aureus, KH38 strain, d) S. aureus, LAC91 strain, and e) P. aeruginosa, PA01 strain. Error bars are shown on each plot for both wavelength-normalized absorbance and OD600 measurements; however, the error is so small for the wavelength-normalized absorbance that most of the error bars are smaller than the symbols, while the error is clearly visible for OD600 measurements.

Metrics