Abstract

We present reflection-mode bioimaging system providing complementary optical, photoacsoutic and acoustic measurements by acoustic detector after each laser pulse. While the photons absorbed within the sample provide optoacoustic (OA) signals, the photons absorbed by the external electrode of a detector provide the measurable diffuse reflectance (DR) from the sample and the probing ultrasonic (US) pulse. To demonstrate the in vivo capabilities of the system we present the results of complementary DR/OA/US imaging of a mouse tumor, head of a newborn rat, and the back of a newborn rat with 3.5mm/50μm/35μm lateral resolution. Trimodal approach allows visualization of mechanical structures in healthy and pathological tissues along with peculiarities of blood supply. The system may be used for diagnostics of diseases accompanied by the defects of vascularization as well as for assessing the mechanisms of vascular changes when monitoring response to therapy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study

Pavel Subochev, Anna Orlova, Marina Shirmanova, Anna Postnikova, and Ilya Turchin
Biomed. Opt. Express 6(2) 631-638 (2015)

Toward whole-brain in vivo optoacoustic angiography of rodents: modeling and experimental observations

Pavel Subochev, Ekaterina Smolina, Ekaterina Sergeeva, Mikhail Kirillin, Anna Orlova, Daria Kurakina, Daniil Emyanov, and Daniel Razansky
Biomed. Opt. Express 11(3) 1477-1488 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Jennings and N. J. Long, “‘Two is better than one’—probes for dual-modality molecular imaging,” Chem. Commun. (Camb.) 24, 3511–3524 (2009).
    [Crossref]
  2. C. J. H. Ho, N. C. Burton, S. Morscher, U. Dinish, J. Reber, V. Ntziachristos, and M. Olivo, “Advances in Optoacoustic Imaging: From Benchside to Clinic,” in Frontiers in Biophotonics for Translational Medicine (Springer, 2016), pp. 75–109.
  3. A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
    [Crossref]
  4. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  5. P. Beard, “Biomedical photoacoustic imaging,” Interface focus, rsfs20110028 (2011).
  6. V. V. Tuchin and V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE press Bellingham, 2007), Vol. 13.
  7. C. R. Hill, J. C. Bamber, and G. Haar, Physical Principles of Medical Ultrasonics (Wiley Online Library, 2004), Vol. 2.
  8. H. Yang, L. Xi, S. Samuelson, H. Xie, L. Yang, and H. Jiang, “Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through a MEMS scanning mirror,” Biomed. Opt. Express 4(3), 427–432 (2013).
    [Crossref] [PubMed]
  9. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [Crossref] [PubMed]
  10. R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
    [Crossref] [PubMed]
  11. P. Subochev, A. Katichev, A. Morozov, A. Orlova, V. Kamensky, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: phantom study,” Opt. Lett. 37(22), 4606–4608 (2012).
    [Crossref] [PubMed]
  12. P. Subochev, A. Orlova, M. Shirmanova, A. Postnikova, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study,” Biomed. Opt. Express 6(2), 631–638 (2015).
    [Crossref] [PubMed]
  13. P. Subochev, I. Fiks, M. Frenz, and Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
    [Crossref]
  14. P. Subochev, “Cost-effective imaging of optoacoustic pressure, ultrasonic scattering, and optical diffuse reflectance with improved resolution and speed,” Opt. Lett. 41(5), 1006–1009 (2016).
    [Crossref] [PubMed]
  15. D. Bergström, J. Powell, and A. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys. 101(11), 113504 (2007).
    [Crossref]
  16. M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [Crossref] [PubMed]
  17. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
    [Crossref]
  18. M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
    [Crossref] [PubMed]
  19. A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
    [Crossref]
  20. H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
    [Crossref]
  21. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  22. A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).
  23. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
    [Crossref] [PubMed]
  24. S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
    [Crossref] [PubMed]
  25. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
    [Crossref] [PubMed]

2016 (2)

P. Subochev, I. Fiks, M. Frenz, and Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

P. Subochev, “Cost-effective imaging of optoacoustic pressure, ultrasonic scattering, and optical diffuse reflectance with improved resolution and speed,” Opt. Lett. 41(5), 1006–1009 (2016).
[Crossref] [PubMed]

2015 (5)

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

P. Subochev, A. Orlova, M. Shirmanova, A. Postnikova, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study,” Biomed. Opt. Express 6(2), 631–638 (2015).
[Crossref] [PubMed]

2014 (3)

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (1)

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

2010 (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[Crossref] [PubMed]

2009 (2)

L. E. Jennings and N. J. Long, “‘Two is better than one’—probes for dual-modality molecular imaging,” Chem. Commun. (Camb.) 24, 3511–3524 (2009).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

2007 (2)

D. Bergström, J. Powell, and A. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys. 101(11), 113504 (2007).
[Crossref]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

2006 (1)

2005 (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Bauer, A. Q.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

Beard, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Bergström, D.

D. Bergström, J. Powell, and A. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys. 101(11), 113504 (2007).
[Crossref]

Bouchard, R.

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Cox, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Culver, J. P.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

Emelianov, S.

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Erpelding, T. N.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

Estrada, H.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Fiks, I.

P. Subochev, I. Fiks, M. Frenz, and Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

Frenz, M.

P. Subochev, I. Fiks, M. Frenz, and Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Gertsch, A.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
[Crossref] [PubMed]

Jaeger, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Jathoul, A. P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Jennings, L. E.

L. E. Jennings and N. J. Long, “‘Two is better than one’—probes for dual-modality molecular imaging,” Chem. Commun. (Camb.) 24, 3511–3524 (2009).
[Crossref]

Jiang, H.

Johnson, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Kamensky, V.

Kaplan, A.

D. Bergström, J. Powell, and A. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys. 101(11), 113504 (2007).
[Crossref]

Katichev, A.

Kitz, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Kneipp, M.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Laufer, J.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Li, M.-L.

Long, N. J.

L. E. Jennings and N. J. Long, “‘Two is better than one’—probes for dual-modality molecular imaging,” Chem. Commun. (Camb.) 24, 3511–3524 (2009).
[Crossref]

Lythgoe, M. F.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Marafioti, T.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Maslov, K.

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Morozov, A.

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Nothdurft, R. E.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

Ntziachristos, V.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[Crossref] [PubMed]

Ogunlade, O.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Omar, M.

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

Orlova, A.

Pedley, R. B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Philip, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Pizzey, A. R.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Postnikova, A.

Powell, J.

D. Bergström, J. Powell, and A. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys. 101(11), 113504 (2007).
[Crossref]

Pule, M. A.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Razansky, D.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[Crossref] [PubMed]

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[Crossref] [PubMed]

Sahin, O.

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Samuelson, S.

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Schwarz, M.

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

Shirmanova, M.

Soliman, D.

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

Stoica, G.

Subochev, P.

Symvoulidis, P.

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

Taruttis, A.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Treeby, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Turchin,

P. Subochev, I. Fiks, M. Frenz, and Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

Turchin, I.

Turner, J.

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Wong, T. T.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Xi, L.

Xie, H.

Yang, H.

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yang, L.

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Zhang, E.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

Zhang, H. E.

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Chem. Commun. (Camb.) (1)

L. E. Jennings and N. J. Long, “‘Two is better than one’—probes for dual-modality molecular imaging,” Chem. Commun. (Camb.) 24, 3511–3524 (2009).
[Crossref]

IEEE Trans. Med. Imaging (2)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Inverse Probl. (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. Appl. Phys. (1)

D. Bergström, J. Powell, and A. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys. 101(11), 113504 (2007).
[Crossref]

J. Biomed. Opt. (2)

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16, 096016 (2011).

Laser Phys. Lett. (2)

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11(4), 045601 (2014).
[Crossref]

P. Subochev, I. Fiks, M. Frenz, and Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

Nat. Methods (1)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 22, 10 (2015).
[Crossref]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Neoplasia (1)

M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, and V. Ntziachristos, “Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM),” Neoplasia 17(2), 208–214 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Photoacoustics (1)

S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
[Crossref] [PubMed]

Other (4)

P. Beard, “Biomedical photoacoustic imaging,” Interface focus, rsfs20110028 (2011).

V. V. Tuchin and V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE press Bellingham, 2007), Vol. 13.

C. R. Hill, J. C. Bamber, and G. Haar, Physical Principles of Medical Ultrasonics (Wiley Online Library, 2004), Vol. 2.

C. J. H. Ho, N. C. Burton, S. Morscher, U. Dinish, J. Reber, V. Ntziachristos, and M. Olivo, “Advances in Optoacoustic Imaging: From Benchside to Clinic,” in Frontiers in Biophotonics for Translational Medicine (Springer, 2016), pp. 75–109.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The schematic (a) and picure (b) of the experimental setup for simultaneous DR/OA/US/ imaging.
Fig. 2
Fig. 2 The results of simultaneous DR/OA/US imaging of the SKBR3 tumor, all bars are 1 mm. (a) – photograph of tumor in vivo, (b) – MIP DR image; (c) – MIP OA image; (d) – MIP US image. Yellow arrows indicate superficial blood vessels, red and green dots indicate the regions with high and low hemoglobin content corespondingly.
Fig. 3
Fig. 3 The results of DR/OA/US imaging of the rat’s head, all bars are 1 mm. (a) – photograph of the rat’s head in vivo, (b) – MIP DR image; (c) – MIP OA image; (d) – MIP US image. Yellow arrows indicate haemorrhages located at the skin’s surface; red dots indicate the region with high hemoglobin content.
Fig. 4
Fig. 4 The results of DR/OA/US imaging of the rat’s back, all bars are 1 mm. (a) – photograph of the rat’s back, (b) – MIP DR image; (c) – MIP OA image; (d) – MIP US image.

Metrics