Abstract

Coherent anti-Stokes Raman microscopy (CARS) is a quantitative, chemically specific, and label-free optical imaging technique for studying inhomogeneous systems. However, the complicating influence of the nonresonant response on the CARS signal severely limits its sensitivity and specificity and especially limits the extent to which CARS microscopy has been used as a fully quantitative imaging technique. On the basis of spectral focusing mechanism, we establish a dual-soliton Stokes based CARS microspectroscopy and microscopy scheme capable of quantifying the spatial information of densities and chemical composition within inhomogeneous samples, using a single fiber laser. Dual-soliton Stokes scheme not only removes the nonresonant background but also allows robust acquisition of multiple characteristic vibrational frequencies. This all-fiber based laser source can cover the entire fingerprint (800-2200 cm−1) region with a spectral resolution of 15 cm−1. We demonstrate that quantitative degree determination of lipid-chain unsaturation in the fatty acids mixture can be achieved by the characterization of C = C stretching and CH2 deformation vibrations. For microscopy purposes, we show that the spatially inhomogeneous distribution of lipid droplets can be further quantitatively visualized using this quantified degree of lipid unsaturation in the acyl chain for contrast in the hyperspectral CARS images. The combination of compact excitation source and background-free capability to facilitate extraction of quantitative composition information with multiplex spectral peaks will enable wider applications of quantitative chemical imaging in studying biological and material systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy

George W. H. Wurpel, Juleon M. Schins, and Michiel Müller
Opt. Lett. 27(13) 1093-1095 (2002)

Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy

Kun Chen, Tao Wu, Haoyun Wei, and Yan Li
Opt. Lett. 41(11) 2628-2631 (2016)

Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy

Christoph Heinrich, Alexander Hofer, Andreas Ritsch, Christian Ciardi, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 16(4) 2699-2708 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
    [Crossref] [PubMed]
  2. L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett. 6(7), 601–608 (2012).
    [Crossref]
  3. L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
    [Crossref] [PubMed]
  4. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
    [Crossref] [PubMed]
  5. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  6. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  7. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  8. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  9. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  10. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  11. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  12. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
    [Crossref] [PubMed]
  13. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
    [Crossref] [PubMed]
  14. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
    [Crossref]
  15. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [Crossref] [PubMed]
  16. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
    [Crossref] [PubMed]
  17. B. C. Chen, J. Sung, and S. H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
    [Crossref] [PubMed]
  18. K. Chen, T. Wu, H. Wei, and Y. Li, “Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Opt. Lett. 41(11), 2628–2631 (2016).
    [Crossref] [PubMed]
  19. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [Crossref] [PubMed]
  20. O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
    [Crossref] [PubMed]
  21. K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in birefringent fibers,” Opt. Lett. 12(3), 202–204 (1987).
    [Crossref] [PubMed]
  22. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
    [Crossref] [PubMed]
  23. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref] [PubMed]
  24. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
    [Crossref] [PubMed]
  25. L. Brückner, T. Buckup, and M. Motzkus, “Enhancement of coherent anti-Stokes Raman signal via tailored probing in spectral focusing,” Opt. Lett. 40(22), 5204–5207 (2015).
    [Crossref] [PubMed]
  26. L. Brückner, T. Buckup, and M. Motzkus, “Exploring the potential of tailored spectral focusing,” J. Opt. Soc. Am. B 33(7), 1482–1491 (2016).
    [Crossref]
  27. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref] [PubMed]
  28. H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
    [Crossref] [PubMed]

2016 (2)

2015 (1)

2014 (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

2013 (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

2012 (1)

L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett. 6(7), 601–608 (2012).
[Crossref]

2011 (4)

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[Crossref] [PubMed]

2010 (3)

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
[Crossref] [PubMed]

B. C. Chen, J. Sung, and S. H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
[Crossref] [PubMed]

2006 (3)

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2004 (2)

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
[Crossref]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

2003 (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1987 (1)

Ackermann, C.

Akimov, D.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Almond, L. M.

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

Andresen, E. R.

Barr, H.

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

Bergner, N.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Berto, P.

Bielecki, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Blow, K. J.

Bokobza, L.

L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett. 6(7), 601–608 (2012).
[Crossref]

Bonn, M.

H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
[Crossref] [PubMed]

Bopparta, S. A.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
[Crossref]

Borri, P.

Brackmann, C.

Bredfeldt, J. S.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
[Crossref]

Brückner, L.

Buckup, T.

Burger, K. N.

H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
[Crossref] [PubMed]

Burkacky, O.

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Carrasco, S.

Chen, B. C.

B. C. Chen, J. Sung, and S. H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Chen, K.

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Dietzek, B.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Doran, N. J.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref] [PubMed]

Enejder, A.

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Evans, C. L.

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Ganikhanov, F.

Hanke, T.

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hill, W.

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Huang, Z.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Hutchings, J.

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

Jia, Y.

Kalff, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Katz, M.

Kendall, C.

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

Kopf, D.

Krafft, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Krauss, G.

Lam, S.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Langbein, W.

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Leitenstorfer, A.

Li, Y.

Lim, S. H.

B. C. Chen, J. Sung, and S. H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lui, H.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Marks, D. L.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
[Crossref]

McLean, D. I.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

McWilliams, A.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Meyer, T.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moffatt, D. J.

Motzkus, M.

Müller, M.

H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
[Crossref] [PubMed]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref] [PubMed]

Pegoraro, A. F.

Pezacki, J. P.

Popp, J.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Reichart, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Ridsdale, A.

Rigneault, H.

Rinia, H. A.

H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
[Crossref] [PubMed]

Rocha-Mendoza, I.

Romeike, B. F.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

Seitz, W.

Sell, A.

Selm, R.

Shepherd, N.

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stolow, A.

Stone, N.

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

Sung, J.

B. C. Chen, J. Sung, and S. H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Sunney Xie, X.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Vinegoni, C.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
[Crossref]

Watson, P.

Wei, H.

Winterhalder, M.

Wood, D.

Wu, T.

Xie, X. S.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Zeng, H.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Zhang, J.

L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett. 6(7), 601–608 (2012).
[Crossref]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Zumbusch, A.

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
[Crossref] [PubMed]

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
[Crossref] [PubMed]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Bopparta, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85(23), 5787–5789 (2004).
[Crossref]

Biophys. J. (1)

H. A. Rinia, K. N. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95(10), 4908–4914 (2008).
[Crossref] [PubMed]

Express Polym. Lett. (1)

L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett. 6(7), 601–608 (2012).
[Crossref]

Int. J. Cancer (1)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

L. M. Almond, J. Hutchings, N. Shepherd, H. Barr, N. Stone, and C. Kendall, “Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus,” J. Biophotonics 4(10), 685–695 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

B. C. Chen, J. Sung, and S. H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (9)

I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
[Crossref] [PubMed]

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
[Crossref] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[Crossref] [PubMed]

L. Brückner, T. Buckup, and M. Motzkus, “Enhancement of coherent anti-Stokes Raman signal via tailored probing in spectral focusing,” Opt. Lett. 40(22), 5204–5207 (2015).
[Crossref] [PubMed]

K. Chen, T. Wu, H. Wei, and Y. Li, “Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Opt. Lett. 41(11), 2628–2631 (2016).
[Crossref] [PubMed]

K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in birefringent fibers,” Opt. Lett. 12(3), 202–204 (1987).
[Crossref] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Science (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simulation of dual-soliton output of the PM-PCF when the angle between the input polarization and the fast axis is 42°. Frequency separation between soliton 1 and 2 is about △ω = 1.5nm; Temporal walk-off is about τ0 = 1.3ps.
Fig. 2
Fig. 2 (a) Energy-level scheme of the DS-CARS process under spectral focusing mechanism. (b) Principle of the spectral focusing and DS-CARS in the time-frequency plane. Note that there is only one pump that is scanned in time from soliton 1 all the way to soliton 2. τ0 is the temporal walk-off of the dual-soliton pulses; τ1 is the delay interval.
Fig. 3
Fig. 3 (a) DS-CARS spectrum (black) with three peaks is obtained from the difference of the two simulated CARS signals by soliton 1 and 2. (b) and (c) Simulated effect of peak location of DS-CARS (b) and spectral separation of the dual-soliton (c) on the linear correlation between Peak intensity and concentration of dilute analytes. (d) The correlation coefficient R2 against the ratio of resonant and nonresonant contribution. The marker (green hex star) represents a nonresonant contribution about 100 times weaker than the resonant contribution. F = the F-test value, P = statistical significance.
Fig. 4
Fig. 4 (a) Sketch of the experimental setup: HWP, half wave-plate; PBS, polarizing beam splitter; PCF, photonic crystal fiber; F1, F2, long-pass filter; F3, short-pass filter; Pol, polarizer ; SF57, SF-57 glass rod; DM, dichroic mirror; OBJ, objective lenses; L1 = 30mm, L2 = 108mm, L3 = 200mm. (b) The output spectra of Stokes and pump; Stokes profile is a linear combination of soliton 1 and 2. (c) Calibration of Raman shift with respect to pump-Stokes pulse delay using a set of Raman peaks of ethanol; insets showing the spontaneous Raman spectra of ethanol with three peaks to be used in the calibration.
Fig. 5
Fig. 5 (a) Measured CARS spectrograms of PET as a function of pulse delay and the signal wavelength. (b) CARS spectra generated from soliton 1 and soliton 2 and shift ICARS2 towards ICARS1 by the amount of τ0. (c) Difference CARS signals between ICARS2 and ICARS1 (DS-CARS) and the spontaneous Raman spectra of PET. (d) Intensity calibrated DS-CARS and the spontaneous Raman spectra of PET. τ0 is the temporal walk-off of the dual-soliton pulses; τ1 is the delay interval.
Fig. 6
Fig. 6 (a) The originally measured CARS spectra of fish oil, olive oil and oleic acid by soliton1 and 2 with strong nonresonant background. (b) and (c) DS-CARS and spontaneous Raman spectra of the same fatty acids. Each trace is vertically displaced for clarity.
Fig. 7
Fig. 7 Illustration of quantitative nature of multiplex DS-CARS. (a) DS-CARS spectra of fish/olive mixtures in the fingerprint region. The fish/olive molar ratio is indicated. (b) Comparison between experiment value of I1260/I1300 and I1450/I1650 in the mixture oil (red and blue triangle) and theoretical fitting curve (red and blue solid line) as a function of fish fraction in fish/olive mixture.
Fig. 8
Fig. 8 DS-CARS images at (a) 1260 cm−1, (b) 1300 cm−1, (e) 1450 cm−1 and (f) 1650 cm−1 of a mixture of fish and olive oil droplets. Image 50 × 50 pixels, pixel time 50 ms. The droplets marked with arrows are difficult to identify in (a), (b), (e) and (f). (c) and (g) Intensity ratio image of 1260 cm−1 over 1300 cm−1 (I1260/I1300) and 1450 cm−1 over 1650 cm−1 (I1450/I1650). Fish and olive oil droplets appear blue and reddish yellow, respectively. (d) and (h) DS-CARS spectra of the oil droplets marked as A, B, C and D in parts (a), (b), (e) and (f), respectively. All the traces in (d) and (h) are vertically displaced for clarity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E P (t)= E P0 (t) e i ω P0 tiα t 2 +C.C.
E S (tΔt)= E S0 (tΔt) e i ω S0 (tΔt)iα (tΔt) 2 +C.C.
A(t)= E P (t) E S (tΔt) = E P0 (t) E S0 (tΔt) e i( ω P0 ω S0 +2αΔt)t × e i( ω S0 αΔt)Δt .
I CARS ( ω as ) | P (3) ( ω as ) | 2 = | P NR (3) + P R (3) ( ω as ) | 2 | P NR (3) | 2 + | P R (3) ( ω as ) | 2 +2 P NR (3) Re[ P R (3) ( ω as ) ].
P R (3) ( ω as ){ χ R (3) [ E s ( ω as ) E p ( ω as )] E pr ( ω as ).
χ R (3) = χ R (3) ( ω as ; ω p , ω s , ω pr )= j N A j Ω j ( ω p ω s )i Γ j .
Δ I CARS ( ω as )2 P NR (3) { Re[ P R (3) ( ω as , ω as1 ) ]Re[ P R (3) ( ω as , ω as2 ) ] }N.
f I 1260 / I 1300 (m)= m I 1260 fish +(1m) I 1260 olive m I 1300 fish +(1m) I 1300 olive .
f I 1450 / I 1650 (m)= m I 1450 fish +(1m) I 1450 olive m I 1650 fish +(1m) I 1650 olive .

Metrics