Abstract

Optical polarization tractography (OPT) has recently been applied to map fiber organization in the heart, skeletal muscle, and arterial vessel wall with high resolution. The fiber orientation measured in OPT represents the 2D projected fiber angle in a plane that is perpendicular to the incident light. We report here a dual-angle extension of the OPT technology to measure the actual 3D fiber orientation in tissue. This method was first verified by imaging the murine extensor digitorum muscle placed at various known orientations in space. The accuracy of the method was further studied by analyzing the 3D fiber orientation of the mouse tibialis anterior muscle. Finally we showed that dual-angle OPT successfully revealed the unique 3D “arcade” fiber structure in the bovine articular cartilage.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao
Biomed. Opt. Express 5(8) 2843-2855 (2014)

Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography

Chuanmao Fan and Gang Yao
Biomed. Opt. Express 4(3) 460-465 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
    [Crossref] [PubMed]
  2. G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
    [Crossref] [PubMed]
  3. C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
    [Crossref] [PubMed]
  4. D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
    [Crossref] [PubMed]
  5. P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophys. J. 66(1), 259–267 (1994).
    [Crossref] [PubMed]
  6. C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
    [Crossref] [PubMed]
  7. C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
    [Crossref] [PubMed]
  8. C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett. 37(18), 3882–3884 (2012).
    [Crossref] [PubMed]
  9. Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
    [Crossref] [PubMed]
  10. H. Wang, C. Lenglet, and T. Akkin, “Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain,” J. Biomed. Opt. 20(3), 036003 (2015).
    [Crossref] [PubMed]
  11. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
    [Crossref] [PubMed]
  12. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
    [Crossref] [PubMed]
  13. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
    [Crossref] [PubMed]
  14. Y. Wang and G. Yao, “Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2540–2545 (2013).
    [Crossref] [PubMed]
  15. Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
    [Crossref] [PubMed]
  16. L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J Biophotonics (online 11 DEC 2015).
  17. Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
    [Crossref] [PubMed]
  18. M. A. Wallenburg, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy,” Opt. Lett. 35(15), 2570–2572 (2010).
    [Crossref] [PubMed]
  19. F. Fanjul-Vélez and J. L. Arce-Diego, “Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle,” Opt. Lett. 35(8), 1163–1165 (2010).
    [Crossref] [PubMed]
  20. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, “Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography,” Opt. Lett. 31(15), 2305–2307 (2006).
    [Crossref] [PubMed]
  21. D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 3(3), 378–387 (2012).
    [Crossref] [PubMed]
  22. Z. Lu, D. Kasaragod, and S. J. Matcher, “Conical scan polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(3), 752–762 (2014).
    [Crossref] [PubMed]
  23. C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
    [Crossref] [PubMed]
  24. C. Fan and G. Yao, “Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation,” Opt. Express 18(7), 7281–7287 (2010).
    [Crossref] [PubMed]
  25. C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera,” Opt. Express 20(20), 22360–22371 (2012).
    [Crossref] [PubMed]
  26. J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
    [PubMed]
  27. Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
    [Crossref] [PubMed]
  28. J. H. Lee and Y. Xia, “Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging,” Microsc. Res. Tech. 76(6), 625–632 (2013).
    [Crossref] [PubMed]
  29. J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
    [PubMed]
  30. V. Augusto, C. R. Padovani, and G. E. R. Campos, “Skeletal muscle fiber types in C57BL6J mice,” Braz. J. Morphol. Sci. 21(2), 89–94 (2004).
  31. X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express 5(1), 136–148 (2014).
    [Crossref] [PubMed]
  32. V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
    [Crossref] [PubMed]

2016 (2)

C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
[Crossref] [PubMed]

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

2015 (2)

H. Wang, C. Lenglet, and T. Akkin, “Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain,” J. Biomed. Opt. 20(3), 036003 (2015).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (4)

2012 (6)

2010 (3)

2008 (2)

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (1)

V. Augusto, C. R. Padovani, and G. E. R. Campos, “Skeletal muscle fiber types in C57BL6J mice,” Braz. J. Morphol. Sci. 21(2), 89–94 (2004).

2001 (1)

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

1999 (2)

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

1994 (2)

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophys. J. 66(1), 259–267 (1994).
[Crossref] [PubMed]

1990 (1)

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
[PubMed]

1969 (1)

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Akkin, T.

C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
[Crossref] [PubMed]

H. Wang, C. Lenglet, and T. Akkin, “Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain,” J. Biomed. Opt. 20(3), 036003 (2015).
[Crossref] [PubMed]

Ambrosi, C. M.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Arce-Diego, J. L.

Augusto, V.

V. Augusto, C. R. Padovani, and G. E. R. Campos, “Skeletal muscle fiber types in C57BL6J mice,” Braz. J. Morphol. Sci. 21(2), 89–94 (2004).

Baruffi, S.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Basser, P. J.

P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophys. J. 66(1), 259–267 (1994).
[Crossref] [PubMed]

Besier, T. F.

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

Black, A. J.

C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
[Crossref] [PubMed]

Boppart, S. A.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Bouma, B. E.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Bovendeerd, P. H. M.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

Brezinski, M. E.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Buckberg, G.

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

Burton-Wurster, N.

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Campos, G. E. R.

V. Augusto, C. R. Padovani, and G. E. R. Campos, “Skeletal muscle fiber types in C57BL6J mice,” Braz. J. Morphol. Sci. 21(2), 89–94 (2004).

Clark, J. M.

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
[PubMed]

Coghlan, C.

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

Drost, M. R.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

Duan, D.

Edmond, M.

Efimov, I. R.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

Ershler, P. R.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Fan, C.

Fanjul-Vélez, F.

Fedorov, V. V.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Fernandez, J. F.

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

Fleming, C. P.

Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
[Crossref] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

Fujimoto, J. G.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Gan, Y.

Gangnus, S. V.

Ghosh, N.

Goergen, C. J.

Grounds, M. D.

Herrmann, J. M.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Hoffman, J. I. E.

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

Jacobs, J.

Janssen, J. D.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

Jesser, C. A.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Kasaragod, D.

Kasaragod, D. K.

Kirk, R. W.

Kretzers, L. J. G.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

Lataster, L. M. A.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

LeBihan, D.

P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophys. J. 66(1), 259–267 (1994).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee and Y. Xia, “Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging,” Microsc. Res. Tech. 76(6), 625–632 (2013).
[Crossref] [PubMed]

Lenglet, C.

H. Wang, C. Lenglet, and T. Akkin, “Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain,” J. Biomed. Opt. 20(3), 036003 (2015).
[Crossref] [PubMed]

Liu, C. J.

C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
[Crossref] [PubMed]

Lloyd, D. G.

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

Lo, E. H.

Lorenser, D.

Lu, Z.

Lust, G.

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Lux, R. L.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Macchi, E.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Mahajan, A.

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

Mandeville, E. T.

Matcher, S. J.

Mattiello, J.

P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophys. J. 66(1), 259–267 (1994).
[Crossref] [PubMed]

McLaughlin, R. A.

Mithraratne, K.

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

Moody, J. B.

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Nicolay, K.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

Padovani, C. R.

V. Augusto, C. R. Padovani, and G. E. R. Campos, “Skeletal muscle fiber types in C57BL6J mice,” Braz. J. Morphol. Sci. 21(2), 89–94 (2004).

Patel, D. P.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Pitris, C.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Radhakrishnan, H.

Ripplinger, C. M.

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

Rollins, A. M.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

Ross, J.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Sakadžic, S.

Saleh, S.

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

Sampson, D. D.

Schuessler, R. B.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Shim, V. B.

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

Simpson, M. C.

Sonnenblick, E. H.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Sosnovik, D. E.

Spaggiari, S.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Spotnitz, H. M.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Srinivasan, V. J.

Stamper, D. L.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Streeter, D. D.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Taccardi, B.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Ugryumova, N.

Van Donkelaar, C. C.

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

Vitkin, I. A.

Vyhmeister, Y.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

Wallenburg, M. A.

Wang, H.

C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
[Crossref] [PubMed]

H. Wang, C. Lenglet, and T. Akkin, “Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain,” J. Biomed. Opt. 20(3), 036003 (2015).
[Crossref] [PubMed]

Wang, Y.

Wasala, N. B.

Webb, B.

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

Wood, M. F. G.

Xia, Y.

J. H. Lee and Y. Xia, “Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging,” Microsc. Res. Tech. 76(6), 625–632 (2013).
[Crossref] [PubMed]

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Yang, X.

Yao, G.

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
[Crossref] [PubMed]

Y. Wang and G. Yao, “Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2540–2545 (2013).
[Crossref] [PubMed]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref] [PubMed]

C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera,” Opt. Express 20(20), 22360–22371 (2012).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref] [PubMed]

C. Fan and G. Yao, “Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation,” Opt. Express 18(7), 7281–7287 (2010).
[Crossref] [PubMed]

Yao, X.

Zhang, K.

Biomech. Model. Mechanobiol. (1)

V. B. Shim, T. F. Besier, D. G. Lloyd, K. Mithraratne, and J. F. Fernandez, “The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait,” Biomech. Model. Mechanobiol. 15(1), 195–204 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (8)

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express 5(1), 136–148 (2014).
[Crossref] [PubMed]

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 3(3), 378–387 (2012).
[Crossref] [PubMed]

Z. Lu, D. Kasaragod, and S. J. Matcher, “Conical scan polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(3), 752–762 (2014).
[Crossref] [PubMed]

Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
[Crossref] [PubMed]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref] [PubMed]

Y. Wang and G. Yao, “Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2540–2545 (2013).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
[Crossref] [PubMed]

Biophys. J. (1)

P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophys. J. 66(1), 259–267 (1994).
[Crossref] [PubMed]

Braz. J. Morphol. Sci. (1)

V. Augusto, C. R. Padovani, and G. E. R. Campos, “Skeletal muscle fiber types in C57BL6J mice,” Braz. J. Morphol. Sci. 21(2), 89–94 (2004).

Circ. Res. (1)

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res. 24(3), 339–347 (1969).
[Crossref] [PubMed]

Circulation (2)

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation 90(6), 3076–3090 (1994).
[Crossref] [PubMed]

G. Buckberg, J. I. E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan, “Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function,” Circulation 118(24), 2571–2587 (2008).
[Crossref] [PubMed]

J. Anat. (2)

C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999).
[Crossref] [PubMed]

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
[PubMed]

J. Biomed. Opt. (5)

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref] [PubMed]

C. J. Liu, A. J. Black, H. Wang, and T. Akkin, “Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 21(7), 070501 (2016).
[Crossref] [PubMed]

H. Wang, C. Lenglet, and T. Akkin, “Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain,” J. Biomed. Opt. 20(3), 036003 (2015).
[Crossref] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).
[Crossref] [PubMed]

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

J. Rheumatol. (1)

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26(3), 627–635 (1999).
[PubMed]

Microsc. Res. Tech. (1)

J. H. Lee and Y. Xia, “Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging,” Microsc. Res. Tech. 76(6), 625–632 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Osteoarthritis Cartilage (1)

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Other (1)

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J Biophotonics (online 11 DEC 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 An illustration of the OPT measurement geometry. The laboratory coordinate system is formed by the x-y-z vectors. The light is initially incident along the z-axis, but is refracted to the z′-axis inside the sample. OPT measures the fiber orientation β within the evaluation plane (x′-y′) which is perpendicular to the light direction (z′) inside the sample. The actual fiber lies within the projection plane formed by the light direction and the fiber.
Fig. 2
Fig. 2 Single-scan OPT and registration of two image volumes acquired in dual-angle OPT. (a) A schematic illustration of the geometry of the dual-angle OPT imaging. The EDL sample was rotated in the laboratory coordinates by γ1 and γ2 around the x-axis to complete the dual angle imaging. (b) The single-scan OPT of the EDL muscle obtained at γ1 = −20° and γ2 =+ 20°. (c) The surface profile of the EDL muscle imaged at γ1 = −20°. (c) The surface profiles of the same EDL muscle imaged at γ2 =+ 20° and after rotating back by −40° around the x-axis to be registered with the results in (c). The unit in the contour plots (c) and (d) represents the height of the sample surface (in “pixels” along the z-axis).
Fig. 3
Fig. 3 3D dual-angle OPT and registration of multiple image volumes obtained at different 3D positions. (a) A schematic illustration of rotating the EDL muscle from α = −30° to α =+ 20° around the validation axis (V). (b) The 3D tractography of the EDL muscle placed at α = 0°, α =+ 20°, and α = −30° obtained using the dual-angle OPT at each position. (c) The surface profiles of the sample located at α = 0°. The images in (d) and (e) show the corresponding surface profile measured at α =+ 20° and α = −30°, and after rotating the image volumes back by −20° and + 30° around the validation axis to be registered with (c). The unit in the contour plots (c), (d), and (e) represents the height of the sample surface (in “pixels” along the z-axis).
Fig. 4
Fig. 4 Example optimization results. The symbols represented the measured projection angles for a region-of-interest (ROI) in the AC (a), AB (b), and BC (c) planes at different sample positions. The solid line indicated the optimization results (best-fitted) based on Eq. (10).
Fig. 5
Fig. 5 The correlation between measured and expected projection angles in fifty randomly selected ROIs (48 × 48 × 48 µm3) from the EDL muscle. The projection angles were calculated in (a) AC-plane, (b) AB-plane, and (c) BC-plane. The regression equation and the coefficient of determination (R2) were also shown. The distribution of (d) coefficient of determination (R2), (e) slope, and (f) y-intercept of the linear regression analyses between measured and expected fiber angles obtained in ten tests of using 50 random ROIs in the EDL muscle.
Fig. 6
Fig. 6 Dual-angle OPT of a piece of the mouse tibialis anterior (TA) muscle. (a) The 3D intensity image of the muscle. (b) The 3D tractography obtained in dual-angle OPT. (c) Detailed fiber organization of two separate fiber bundles inside the muscle. (d) The 2D tractography by projecting the 3D fibers shown in (c) to the AB, AC, and BC planes.
Fig. 7
Fig. 7 A comparison of the fiber organization obtained in dual-angle OPT with that obtained by analyzing OCT intensity profiles in the en face plane at depths from 200 µm to 800 µm. The first row shows the en face intensity obtained in the muscle sample place at γ2 =+ 25° in dual-angle OPT. The second row shows the tractography calculated from the intensity images. The third row shows the 2D tractography calculated by projecting the 3D fiber orientation obtained in dual-angle OPT to the corresponding en face plane (Eq. (7)).
Fig. 8
Fig. 8 3D visualization of a piece of the bovine cartilage in (a) intensity, (b) 3D fiber tractography from dual-angle measurements, and (c) the 2D tractography by projecting the 3D fibers shown in (b) to the AB-, AC-, and BC-plane as labeled in (a).
Fig. 9
Fig. 9 (a) The en face intensity and tractography images obtained from direct OPT imaging of the side of the cartilage sample (the “side-scan” as labeled in Fig. 8). (b) The tractography by projecting the 3D fiber orientation obtained in dual-angle OPT to the same tissue side as imaged in (a). NC: non-calcified cartilage; CB: calcified cartilage/bone.
Fig. 10
Fig. 10 (a) The fiber orientation over the depth obtained from the side-scan image by averaging all B-scan inside a 0.5 mm wide ROI (marked in red box in Fig. 9(a)). (b) The orientation change over depth obtained from the projected 2D fiber orientation (Fig. 9(b)). The blue lines in (a) and (b) are fitting results using a hyperbolic tangent function. The green curves are the first order derivative of the curve fitting. The labels “ST”, “TR”, and “CB” indicate the boundaries between the superficial and transitional zone, the transitional and radial zone, and cartilage and bone, respectively. Error bars indicate standard deviation.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

K( n+1 )= J L 1 ( ϕ n , ρ n ) J RT (n+1) J L 1 ( ϕ n , ρ n ).
J L T ( n ) J L ( n )= [ J ST T (n1) ] 1 J RT (n) [ J ST (n1) ] 1 .
L= [ L x , L y , L z ] T =I/n+( cos θ i n 2 sin 2 θ i )N/n,
P=[ cosθcosϕcos(βϕ)sinϕsin(βϕ) cosθsinϕcos(βϕ)+cosϕsin(βϕ) sinθcos(βϕ) ].
M=P×L=[ sinϕcos(βϕ)+cosθcosϕsin(βϕ) cosϕcos(βϕ)+cosθsinϕsin(βϕ) sinθsin(βϕ) ].
F= [ f x , f y , f z ] T =M( θ, ϕ, β )×M( θ, ϕ, β ).
{ θ AC = tan 1 ( f z / f x )= tan 1 (cot θ f /cos ϕ f ) θ AB = tan 1 ( f z / f y )= tan 1 (cot θ f /sin ϕ f ) θ BC = tan 1 ( f y / f x )= ϕ f ,
{ i'=i+ksinθcosϕ. j'=j+ksinθsinϕ k'=kcsoθ. .
F e (α)= R v (α)F(0)=[ R x ( γ ) R y ( α ) R x ( γ ) ]F(0),
ERR= p i=30 +20 | θ p e ( α 0 , α i ) θ p m ( α i ) | 2 p{ AB,AC,BC },

Metrics