Abstract

Photoacoustic imaging (PAI) is emerging as a potentially powerful imaging tool with multiple applications. Image reconstruction for PAI has been relatively limited because of limited or no modeling of light delivery to deep tissues. This work demonstrates a numerical approach to quantitative photoacoustic image reconstruction that minimizes depth and spectrally derived artifacts. We present the first time-domain quantitative photoacoustic image reconstruction algorithm that models optical sources through acoustic data to create quantitative images of absorption coefficients. We demonstrate quantitative accuracy of less than 5% error in large 3 cm diameter 2D geometries with multiple targets and within 22% error in the largest size quantitative photoacoustic studies to date (6cm diameter). We extend the algorithm to spectral data, reconstructing 6 varying chromophores to within 17% of the true values. This quantitiative PA tomography method was able to improve considerably on filtered-back projection from the standpoint of image quality, absolute, and relative quantification in all our simulation geometries. We characterize the effects of time step size, initial guess, and source configuration on final accuracy. This work could help to generate accurate quantitative images from both endogenous absorbers and exogenous photoacoustic dyes in both preclinical and clinical work, thereby increasing the information content obtained especially from deep-tissue photoacoustic imaging studies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Limited-view photoacoustic imaging based on an iterative adaptive weighted filtered backprojection approach

Xueyan Liu, Dong Peng, Xibo Ma, Wei Guo, Zhenyu Liu, Dong Han, Xin Yang, and Jie Tian
Appl. Opt. 52(15) 3477-3483 (2013)

Statistical independence in nonlinear model-based inversion for quantitative photoacoustic tomography

Lu An, Teedah Saratoon, Martina Fonseca, Robert Ellwood, and Ben Cox
Biomed. Opt. Express 8(11) 5297-5310 (2017)

Improvement of image quality in diffuse optical tomography by use of full time-resolved data

Feng Gao, Huijuan Zhao, and Yukio Yamada
Appl. Opt. 41(4) 778-791 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging,” Cancer Res. 74(4), 979–1004 (2014).
    [Crossref] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  4. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [Crossref] [PubMed]
  5. A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
    [Crossref] [PubMed]
  6. Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, “Handheld photoacoustic microscopy to detect melanoma depth in vivo,” Opt. Lett. 39(16), 4731–4734 (2014).
    [Crossref] [PubMed]
  7. M. Heijblom, D. Piras, W. Xia, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
    [Crossref] [PubMed]
  8. R. Li, P. Wang, L. Lan, F. P. Lloyd, C. J. Goergen, S. Chen, and J.-X. Cheng, “Assessing breast tumor margin by multispectral photoacoustic tomography,” Biomed. Opt. Express 6(4), 1273–1281 (2015).
    [Crossref] [PubMed]
  9. C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
    [Crossref] [PubMed]
  10. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
    [Crossref] [PubMed]
  11. A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
    [Crossref] [PubMed]
  12. J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
    [Crossref] [PubMed]
  13. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
    [Crossref] [PubMed]
  14. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
    [Crossref] [PubMed]
  15. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
    [Crossref] [PubMed]
  16. B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25(9), 2347–2356 (2008).
    [Crossref] [PubMed]
  17. D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
    [Crossref] [PubMed]
  18. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
    [Crossref] [PubMed]
  19. A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
    [Crossref] [PubMed]
  20. S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
    [Crossref] [PubMed]
  21. Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
    [Crossref] [PubMed]
  22. L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time domain,” J. Opt. A, Pure Appl. Opt. 11(8), 085301 (2009).
    [Crossref]
  23. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26(2), 443–455 (2009).
    [Crossref] [PubMed]
  24. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  25. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
  26. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
    [Crossref] [PubMed]
  27. M. B. Moffett, “Theoretical Acoustics. Philip M. Morse and K. Uno Ingard. McGraw-Hill, New York, 1968. xxii, 938 pp., illus. $23. International Series in Pure and Applied Physics,” Science 170(3954), 156–157 (1970).
    [Crossref]
  28. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
    [Crossref] [PubMed]
  29. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
    [Crossref] [PubMed]
  30. K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, “Imaging workflow and calibration for CT-guided time-domain fluorescence tomography,” Biomed. Opt. Express 2(11), 3021–3036 (2011).
    [Crossref] [PubMed]
  31. S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
    [Crossref] [PubMed]
  32. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40(4), 588–600 (2001).
    [Crossref] [PubMed]
  33. D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
    [Crossref] [PubMed]
  34. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
    [Crossref] [PubMed]
  35. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30(5), 507–509 (2005).
    [Crossref] [PubMed]
  36. A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
    [Crossref] [PubMed]
  37. H. Gao, J. Feng, and L. Song, “Limited-view multi-source quantitative photoacoustic tomography,” Inverse Probl. 31(6), 065004 (2015).
    [Crossref]
  38. N. Song, C. Deumié, and A. Da Silva, “Considering sources and detectors distributions for quantitative photoacoustic tomography,” Biomed. Opt. Express 5(11), 3960–3974 (2014).
    [Crossref] [PubMed]
  39. D. Razansky, “Multispectral Optoacoustic Tomography -Volumetric Color Hearing in Real Time,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1234–1243 (2012).
    [Crossref]
  40. M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).
  41. M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
    [PubMed]
  42. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  43. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
    [Crossref] [PubMed]
  44. X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain,” Biomed. Opt. Express 6(11), 4567–4584 (2015).
    [Crossref] [PubMed]
  45. J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
    [Crossref] [PubMed]

2015 (7)

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

H. Gao, J. Feng, and L. Song, “Limited-view multi-source quantitative photoacoustic tomography,” Inverse Probl. 31(6), 065004 (2015).
[Crossref]

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

R. Li, P. Wang, L. Lan, F. P. Lloyd, C. J. Goergen, S. Chen, and J.-X. Cheng, “Assessing breast tumor margin by multispectral photoacoustic tomography,” Biomed. Opt. Express 6(4), 1273–1281 (2015).
[Crossref] [PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain,” Biomed. Opt. Express 6(11), 4567–4584 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, “Handheld photoacoustic microscopy to detect melanoma depth in vivo,” Opt. Lett. 39(16), 4731–4734 (2014).
[Crossref] [PubMed]

N. Song, C. Deumié, and A. Da Silva, “Considering sources and detectors distributions for quantitative photoacoustic tomography,” Biomed. Opt. Express 5(11), 3960–3974 (2014).
[Crossref] [PubMed]

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref] [PubMed]

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

2012 (7)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

D. Razansky, “Multispectral Optoacoustic Tomography -Volumetric Color Hearing in Real Time,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1234–1243 (2012).
[Crossref]

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

M. Heijblom, D. Piras, W. Xia, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref] [PubMed]

2011 (4)

K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, “Imaging workflow and calibration for CT-guided time-domain fluorescence tomography,” Biomed. Opt. Express 2(11), 3021–3036 (2011).
[Crossref] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

2010 (4)

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

2009 (5)

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26(2), 443–455 (2009).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time domain,” J. Opt. A, Pure Appl. Opt. 11(8), 085301 (2009).
[Crossref]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

2008 (4)

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25(9), 2347–2356 (2008).
[Crossref] [PubMed]

2007 (3)

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

2006 (2)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
[Crossref] [PubMed]

2005 (1)

2002 (1)

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

2001 (1)

1991 (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

1970 (1)

M. B. Moffett, “Theoretical Acoustics. Philip M. Morse and K. Uno Ingard. McGraw-Hill, New York, 1968. xxii, 938 pp., illus. $23. International Series in Pure and Applied Physics,” Science 170(3954), 156–157 (1970).
[Crossref]

Appleton, C.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

Arridge, S. R.

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26(2), 443–455 (2009).
[Crossref] [PubMed]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
[Crossref] [PubMed]

Asao, Y.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Bagchi, S.

Banerjee, B.

Bauer, A. Q.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26(2), 443–455 (2009).
[Crossref] [PubMed]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
[Crossref] [PubMed]

Bodapati, S.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Bu, S.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Buehler, A.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

Busch, T. M.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Cai, X.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Chen, R.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Chen, S.

Chen, X.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Cheng, J.-X.

Cheng, Z.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Cheung, R.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Cornelius, L. A.

Cox, B.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Cox, B. T.

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26(2), 443–455 (2009).
[Crossref] [PubMed]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
[Crossref] [PubMed]

Culver, J. P.

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain,” Biomed. Opt. Express 6(11), 4567–4584 (2015).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Da Silva, A.

Dai, H.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Danielli, A.

Davis, S. C.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

De la Zerda, A.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Dehghani, H.

Deumié, C.

Diebold, G. J.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Eggebrecht, A. T.

El-Ghussein, F.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, “Imaging workflow and calibration for CT-guided time-domain fluorescence tomography,” Biomed. Opt. Express 2(11), 3021–3036 (2011).
[Crossref] [PubMed]

Erpelding, T. N.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

Favazza, C.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Feng, J.

H. Gao, J. Feng, and L. Song, “Limited-view multi-source quantitative photoacoustic tomography,” Inverse Probl. 31(6), 065004 (2015).
[Crossref]

Ferradal, S. L.

Fukutani, K.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Gambhir, S. S.

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Gao, F.

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

Gao, H.

H. Gao, J. Feng, and L. Song, “Limited-view multi-source quantitative photoacoustic tomography,” Inverse Probl. 31(6), 065004 (2015).
[Crossref]

Garcia-Uribe, A.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

Geimer, S.

Ghadyani, H.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Goergen, C. J.

Griffin, G. M.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Gruber, J. D.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Gui, J.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Hahn, S. M.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Hasan, T.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Heijblom, M.

Holt, R. W.

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

Jankovic, L.

Jermyn, M.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Jiang, H.

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time domain,” J. Opt. A, Pure Appl. Opt. 11(8), 085301 (2009).
[Crossref]

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

Jiang, S.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40(4), 588–600 (2001).
[Crossref] [PubMed]

Kachur, A.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Kaipio, J. P.

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

Kara, S.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

Ke, H.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

Keren, S.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Kerley-Hamilton, J. S.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Khan, M. I.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Khuri-Yakub, B. T.

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Kim, C.

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

Klaase, J. M.

Kondo, K.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Köstli, K. P.

Kothapalli, S. R.

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

Krishnaswamy, V.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Krumholz, A.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

Ku, G.

Lan, L.

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Leblond, F.

Levi, J.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Li, C.

Li, R.

Liu, Z.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Lloyd, F. P.

Ma, T.-J.

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Manohar, S.

Margenthaler, J. A.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

Maslov, K.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Maslov, K. I.

Mastanduno, M. A.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Maytin, E. V.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

McBride, T. O.

Moffett, M. B.

M. B. Moffett, “Theoretical Acoustics. Philip M. Morse and K. Uno Ingard. McGraw-Hill, New York, 1968. xxii, 938 pp., illus. $23. International Series in Pure and Applied Physics,” Science 170(3954), 156–157 (1970).
[Crossref]

Nothdurft, R. E.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

Ntziachristos, V.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[Crossref] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

O’Hara, J. A.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Oralkan, O.

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Osterberg, U. L.

Paliwal, A.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Pashley, M. D.

Paulsen, K. D.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40(4), 588–600 (2001).
[Crossref] [PubMed]

Piras, D.

Pogue, B. W.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, “Imaging workflow and calibration for CT-guided time-domain fluorescence tomography,” Biomed. Opt. Express 2(11), 3021–3036 (2011).
[Crossref] [PubMed]

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40(4), 588–600 (2001).
[Crossref] [PubMed]

Pulkkinen, A.

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

Rao, B.

Razansky, D.

D. Razansky, “Multispectral Optoacoustic Tomography -Volumetric Color Hearing in Real Time,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1234–1243 (2012).
[Crossref]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[Crossref] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

Ren, F.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[Crossref] [PubMed]

Roy, D.

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Shiina, T.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Shung, K. K.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Shworak, N. W.

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

Smith, B. R.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Solonenko, M.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Someda, Y.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Song, K. H.

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

Song, L.

H. Gao, J. Feng, and L. Song, “Limited-view multi-source quantitative photoacoustic tomography,” Inverse Probl. 31(6), 065004 (2015).
[Crossref]

Song, N.

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Steenbergen, W.

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

Sun, T.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Tarvainen, T.

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

Tichauer, K. M.

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Vaithilingam, S.

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

van de Ven, S. M. W. Y.

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

van den Engh, F. M.

van Hespen, J. C. G.

van Leeuwen, T. G.

Vasu, R. M.

Vulcan, T.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Wang, H. W.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Wang, K.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Wang, L. V.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref] [PubMed]

Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, “Handheld photoacoustic microscopy to detect melanoma depth in vivo,” Opt. Lett. 39(16), 4731–4734 (2014).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30(5), 507–509 (2005).
[Crossref] [PubMed]

Wang, P.

Wu, X.

Xia, W.

Xing, W.

Xu, J.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Yamakawa, M.

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

Yang, J.-M.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Yao, D.-K.

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref] [PubMed]

Yao, J.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Yao, L.

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time domain,” J. Opt. A, Pure Appl. Opt. 11(8), 085301 (2009).
[Crossref]

Yeh, C.-H.

Yin, H.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Yodh, A. G.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Yuan, Z.

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

Zackrisson, S.

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

Zavaleta, C.

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Zhang, C.

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref] [PubMed]

Zhao, Y.

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Zhou, Q.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Zhou, Y.

Zhu, Q.

Zhu, T. C.

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (6)

Cancer Res. (1)

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

M. A. Mastanduno, J. Xu, F. El-Ghussein, S. Jiang, H. Yin, Y. Zhao, K. Wang, F. Ren, J. Gui, B. W. Pogue, and K. D. Paulsen, “MR-guided near infrared spectral tomography increases diagnostic performance of breast MRI,” Clin. Cancer Res. 21, 3906–3912 (2015).

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Razansky, “Multispectral Optoacoustic Tomography -Volumetric Color Hearing in Real Time,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1234–1243 (2012).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

S. R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array,” IEEE Trans. Biomed. Eng. 59(5), 1199–1204 (2012).
[Crossref] [PubMed]

S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, and Y. Asao, “Model-Based Reconstruction Integrated with Fluence Compensation for Photoacoustic Tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Inverse Probl. (1)

H. Gao, J. Feng, and L. Song, “Limited-view multi-source quantitative photoacoustic tomography,” Inverse Probl. 31(6), 065004 (2015).
[Crossref]

J. Acoust. Soc. Am. (1)

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (9)

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref] [PubMed]

A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, “Quantitative photoacoustic tomography using illuminations from a single direction,” J. Biomed. Opt. 20(3), 036015 (2015).
[Crossref] [PubMed]

J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time domain,” J. Opt. A, Pure Appl. Opt. 11(8), 085301 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

Med. Phys. (2)

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

Nat. Med. (1)

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Nat. Protoc. (1)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (2)

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002).
[PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Radiology (1)

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel Lymph Nodes and Lymphatic Vessels: Noninvasive Dual-Modality in Vivo Mapping by Using Indocyanine Green in Rats--Volumetric Spectroscopic Photoacoustic Imaging and Planar Fluorescence Imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer,” Sci. Rep. 5, 15748 (2015).
[Crossref] [PubMed]

Science (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

M. B. Moffett, “Theoretical Acoustics. Philip M. Morse and K. Uno Ingard. McGraw-Hill, New York, 1968. xxii, 938 pp., illus. $23. International Series in Pure and Applied Physics,” Science 170(3954), 156–157 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sources and detectors surround model domain with three inclusions (a). A diffusion model calculates light fluence (b) and initial pressure maps (c) based on optical sources (blue dots). Sound waves propagate to transducer locations (green dots) to generate forward data (d). A newton method minimizes model-data mismatch to converge on a quantitative solution (e). Normalized FBP (f) is shown shown for comparison.

Fig. 2
Fig. 2

A large geometry of 60mm diameter (a) is used to reconstruct a single 5mm diameter target of 10x contrast. One optical source is located at the bottom of the circle and US transducers surround the entire medium. Target depth is varied from 10mm to 40mm and reconstructed by FBP (b) and qPAT (c). Median recovered absorption coefficient from qPAT (d) is within 22% of the true value as compared with FBP quantification (e).

Fig. 3
Fig. 3

Data from multiple source configurations was combined into reconstructions of the same 3 targets. Fluence maps to illustrate each illumination pattern (a) and reconstructed image qPAT (b) and FBP (c) are shown. Median recovered mua from qPAT within each region is quantified in (d) and absolute error is shown in (e). Normalized FBP concentrations should be 0 and 1 for background and targets (f).

Fig. 4
Fig. 4

Spectral reconstruction using 31 wavelengths. Images of true distribution, qPAT image, and normalized FBP image are shown for oxy-hemoglobin (a), deoxy-hemoglobin (b), water (c), and Alexafluor750 (d). True concentrations (e), median qPAT quantifications (f), and error in qPAT reconstructions (g) are within 17% of the truth for all targets. Normalized true concentration (h), FBP medians (i), and FBP error (j) are affected by target depth.

Fig. 5
Fig. 5

The effect of the initial guess of μa on image quality is shown (a) and quantified in (b). Median values from within each region based on the true distribution are calculated. Absolute error for background and all anomalies (c) show that the method is robust to incorrect initial guess of μa.

Fig. 6
Fig. 6

The effect of the initial guess of μs’ on image quality is shown (a) and quantified in (b). Median values from within each region based on the true distribution are calculated. Absolute error for background and all anomalies (c) show that incorrect assignment of μs’ can have large effects on overall accuracy.

Fig. 7
Fig. 7

The effect of time resolution on image quality is shown (a) for time resolutions from 40ns to 1000ns. Reconstruction error increases exponentially when time resolution is not sufficient (b). Median values from within each region based on the true distribution are calculated (c) and absolute error for background and all anomalies (d) show that target quantification accuracy is stable with sufficient time resolution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Dϕ(r)+ μ a ϕ(r)=S(r)
D= 1 3( μ a + μ s ' )
p 0 (r,λ)=Γ(r)ϕ(r,λ) μ a (r,λ)
2 p(r,t) 1 v s 2 2 t 2 p(r,t)= β C p t H(r,t)
( J T J+λI)Δc= J T Δδ

Metrics