Abstract

We introduce a method that combines two-photon polymerization (TPP) and surface functionalization to enable the indirect optical manipulation of live cells. TPP-made 3D microstructures were coated specifically with a multilayer of the protein streptavidin and non-specifically with IgG antibody using polyethylene glycol diamine as a linker molecule. Protein density on their surfaces was quantified for various coating methods. The streptavidin-coated structures were shown to attach to biotinated cells reproducibly. We performed basic indirect optical micromanipulation tasks with attached structure-cell couples using complex structures and a multi-focus optical trap. The use of such extended manipulators for indirect optical trapping ensures to keep a safe distance between the trapping beams and the sensitive cell and enables their 6 degrees of freedom actuation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cell manipulation by use of diamond microparticles as handles of optical tweezers

Chi-Kuang Sun, Yin-Chieh Huang, Ping Chin Cheng, Hung-Chi Liu, and Bai-Ling Lin
J. Opt. Soc. Am. B 18(10) 1483-1489 (2001)

Two-dimensional silicon photonic crystal based biosensing platform for protein detection

Mindy Lee and Philippe M. Fauchet
Opt. Express 15(8) 4530-4535 (2007)

Optical micromanipulations inside yeast cells

Leonardo Sacconi, Iva M. Tolić-Nørrelykke, Chiara Stringari, Renzo Antolini, and Francesco S. Pavone
Appl. Opt. 44(11) 2001-2007 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
    [Crossref] [PubMed]
  2. L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
    [Crossref] [PubMed]
  3. D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
    [Crossref] [PubMed]
  4. J. Wong, A. Chilkoti, and V. T. Moy, “Direct force measurements of the streptavidin-biotin interaction,” Biomol. Eng. 16(1-4), 45–55 (1999).
    [Crossref] [PubMed]
  5. J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
    [Crossref] [PubMed]
  6. O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
    [Crossref] [PubMed]
  7. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
    [Crossref] [PubMed]
  8. J.-C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
    [Crossref] [PubMed]
  9. K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
    [Crossref] [PubMed]
  10. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
    [Crossref] [PubMed]
  11. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
    [Crossref] [PubMed]
  12. D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
    [Crossref] [PubMed]
  13. S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
    [Crossref]
  14. N. Maghelli and I. M. Tolić-Nørrelykke, “Versatile laser-based cell manipulator,” J. Biophotonics 1(4), 299–309 (2008).
    [Crossref] [PubMed]
  15. E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
    [Crossref] [PubMed]
  16. H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [Crossref] [PubMed]
  17. N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Accurate position tracking of optically trapped live cells,” Biomed. Opt. Express 5(4), 1026–1037 (2014).
    [Crossref] [PubMed]
  18. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
    [Crossref] [PubMed]
  19. S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
    [Crossref] [PubMed]
  20. M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
    [Crossref] [PubMed]
  21. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
    [Crossref] [PubMed]
  22. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
    [Crossref] [PubMed]
  23. A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
    [Crossref]
  24. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
    [Crossref] [PubMed]
  25. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  26. D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
    [Crossref]
  27. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
    [Crossref] [PubMed]
  28. V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” J. Select. Top. Quantum Electr. 21, 5600110 (2015).
  29. H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
    [Crossref] [PubMed]
  30. A. Selimisa, V. Mironovb, and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing,” Microelectron. Eng. 132, 83–89 (2015).
    [Crossref]
  31. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006).
    [Crossref] [PubMed]
  32. T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
    [Crossref]
  33. M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
    [Crossref]
  34. Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
    [Crossref] [PubMed]
  35. B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
    [Crossref]
  36. B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
    [Crossref]
  37. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
    [Crossref] [PubMed]
  38. Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
    [Crossref]
  39. R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
    [Crossref] [PubMed]
  40. J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proc. Natl. Acad. Sci. U.S.A. 97(16), 9037–9041 (2000).
    [Crossref] [PubMed]
  41. K. L. Prime and G. M. Whiteside, “Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers,” J. Am. Chem. Soc. 115(23), 10714–10721 (1993).
    [Crossref]
  42. J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
    [Crossref] [PubMed]
  43. R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
    [Crossref] [PubMed]

2015 (5)

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” J. Select. Top. Quantum Electr. 21, 5600110 (2015).

A. Selimisa, V. Mironovb, and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing,” Microelectron. Eng. 132, 83–89 (2015).
[Crossref]

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

2014 (5)

B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
[Crossref]

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Accurate position tracking of optically trapped live cells,” Biomed. Opt. Express 5(4), 1026–1037 (2014).
[Crossref] [PubMed]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref] [PubMed]

2013 (1)

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

2012 (6)

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref] [PubMed]

2011 (1)

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

2010 (2)

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

2009 (2)

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[Crossref] [PubMed]

H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
[Crossref] [PubMed]

2008 (4)

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
[Crossref] [PubMed]

N. Maghelli and I. M. Tolić-Nørrelykke, “Versatile laser-based cell manipulator,” J. Biophotonics 1(4), 299–309 (2008).
[Crossref] [PubMed]

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref] [PubMed]

2007 (2)

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

2006 (5)

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006).
[Crossref] [PubMed]

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
[Crossref] [PubMed]

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

2005 (1)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

2004 (1)

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

2002 (1)

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[Crossref] [PubMed]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

2000 (2)

J.-C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref] [PubMed]

J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proc. Natl. Acad. Sci. U.S.A. 97(16), 9037–9041 (2000).
[Crossref] [PubMed]

1999 (1)

J. Wong, A. Chilkoti, and V. T. Moy, “Direct force measurements of the streptavidin-biotin interaction,” Biomol. Eng. 16(1-4), 45–55 (1999).
[Crossref] [PubMed]

1996 (1)

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

1995 (1)

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

1993 (1)

K. L. Prime and G. M. Whiteside, “Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers,” J. Am. Chem. Soc. 115(23), 10714–10721 (1993).
[Crossref]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Aekbote, B. L.

B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
[Crossref]

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

Albritton, N. L.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Amato, L.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Amini, H.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Armitage, D.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Axner, O.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[Crossref] [PubMed]

Ayano, S.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref] [PubMed]

Bachman, M.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Balint, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Bambardekar, K.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Bañas, A. R.

Bellini, N.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Berns, M. W.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Bertseva, E.

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Blanc, O.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Bottka, S.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

Bowman, R.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Búzás, A.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

Campoy, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Carberry, D. M.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Carignano, M. A.

J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proc. Natl. Acad. Sci. U.S.A. 97(16), 9037–9041 (2000).
[Crossref] [PubMed]

Cerullo, G.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Chardès, C.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Chen, Q. D.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Chilkoti, A.

J. Wong, A. Chilkoti, and V. T. Moy, “Direct force measurements of the streptavidin-biotin interaction,” Biomol. Eng. 16(1-4), 45–55 (1999).
[Crossref] [PubMed]

Chiyoda, K.

Chowdhury, S.

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

Clément, R.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Csányi, E.

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

Dholakia, K.

Di Carlo, D.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Di Leonardo, R.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

Drakakis, T. S.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Eaton, S. M.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Evander, M.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[Crossref] [PubMed]

Fällman, E.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[Crossref] [PubMed]

Farsari, M.

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” J. Select. Top. Quantum Electr. 21, 5600110 (2015).

A. Selimisa, V. Mironovb, and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing,” Microelectron. Eng. 132, 83–89 (2015).
[Crossref]

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Filippidis, G.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Fons, C. B.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Formanek, F.

Forró, L.

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Fotakis, C.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Fourkas, J. T.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Franz, C. M.

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Freudenthaler, G.

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Frühwirth, T.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Galajda, P.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

Garcés-Chávez, V.

Gaub, H. E.

J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
[Crossref] [PubMed]

Georgiou, S.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Gibson, G. M.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

Gizeli, E.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Glass, D. G.

Glückstad, J.

Goksör, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Gossett, D. R.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Grebenkov, D.

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Gribkova, S.

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Grieve, J. A.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Grigoropoulos, C. P.

H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
[Crossref] [PubMed]

Gu, Y.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Guillaume-Gentil, O.

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Gupta, S. K.

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

Hammarström, B.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[Crossref] [PubMed]

Hanna, S.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

Heisenberg, C.-P.

J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
[Crossref] [PubMed]

Helenius, J.

J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
[Crossref] [PubMed]

Herrington, C. S.

Hesse, J.

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Hidai, H.

H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
[Crossref] [PubMed]

Hinterdorfer, P.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Höglinger, O.

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Howorka, S.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Huang, J. C.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Hur, S. C.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Huser, T.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Hwang, D. J.

H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
[Crossref] [PubMed]

Ikegami, T.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Ishikawa, A.

Jacak, J.

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Jeney, S.

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Jeon, H.

H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
[Crossref] [PubMed]

Jess, P. R. T.

Kawata, S.

Kelemen, L.

B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
[Crossref]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref] [PubMed]

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref] [PubMed]

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

Kimel, S.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Kirei, H.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

Kocher, S. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Krishnan, P.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Lai, H. H.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Laurell, T.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[Crossref] [PubMed]

Lee, W.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Leitz, G.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[Crossref] [PubMed]

Lenne, P.-F.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Li, G. P.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Li, Q.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Liang, H.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Liu, K.-K.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Llagostera, M.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Losert, W.

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

Mach, A. J.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Maghelli, N.

N. Maghelli and I. M. Tolić-Nørrelykke, “Versatile laser-based cell manipulator,” J. Biophotonics 1(4), 299–309 (2008).
[Crossref] [PubMed]

Maruo, S.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Mazilu, M.

McAlinden, N.

McNerney, G.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Meiners, J.-C.

J.-C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref] [PubMed]

Melissinaki, V.

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” J. Select. Top. Quantum Electr. 21, 5600110 (2015).

Miles, M. J.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Millington, O. R.

Mironovb, V.

A. Selimisa, V. Mironovb, and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing,” Microelectron. Eng. 132, 83–89 (2015).
[Crossref]

Monaco, K.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Moy, V. T.

J. Wong, A. Chilkoti, and V. T. Moy, “Direct force measurements of the streptavidin-biotin interaction,” Biomol. Eng. 16(1-4), 45–55 (1999).
[Crossref] [PubMed]

Muller, D. J.

J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
[Crossref] [PubMed]

Nilsson, J.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[Crossref] [PubMed]

Oddershede, L. B.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref] [PubMed]

Olof, S. N.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Ormos, P.

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref] [PubMed]

B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
[Crossref]

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

Oroszi, L.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

Osellame, R.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Ossola, D.

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Ozawa, R.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Padgett, M. J.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Pai, J. H.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Palima, D.

Pammer, P.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Papadakis, G.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Paterson, L.

Persson, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Petrov, D.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Phillips, D. B.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Pissadakis, S.

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” J. Select. Top. Quantum Electr. 21, 5600110 (2015).

Popovich, A.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Potthoff, E.

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Prime, K. L.

K. L. Prime and G. M. Whiteside, “Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers,” J. Am. Chem. Soc. 115(23), 10714–10721 (1993).
[Crossref]

Quake, S. R.

J.-C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref] [PubMed]

Raj, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Rao, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Rarity, J. G.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

Rasmussen, M. B.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref] [PubMed]

Riches, A.

Sambani, K.

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Satulovsky, J.

J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proc. Natl. Acad. Sci. U.S.A. 97(16), 9037–9041 (2000).
[Crossref] [PubMed]

Schindler, H.

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Schlapak, R.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Schmidhauser, P.

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Schubert, F.

B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
[Crossref]

Schütz, G. J.

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Selimisa, A.

A. Selimisa, V. Mironovb, and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing,” Microelectron. Eng. 132, 83–89 (2015).
[Crossref]

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Shao, Z. Z.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Shin, D.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Sibbett, W.

Siegumfeldt, H.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref] [PubMed]

Simpson, S. H.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

Sims, C. E.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Smith, D.

Sonek, G. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Sonnleitner, A.

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Sonnleitner, M.

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Steck, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Stocker, M. P.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Sun, H. B.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, S. M.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Sun, Y. L.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Švec, P.

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

Szegletes, Zs.

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

Szleifer, I.

J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proc. Natl. Acad. Sci. U.S.A. 97(16), 9037–9041 (2000).
[Crossref] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Takeyasu, N.

Tanaka, T.

Thakur, A.

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

Tolic-Nørrelykke, I. M.

N. Maghelli and I. M. Tolić-Nørrelykke, “Versatile laser-based cell manipulator,” J. Biophotonics 1(4), 299–309 (2008).
[Crossref] [PubMed]

Trang, T. C.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Tromberg, B. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Tse, H. T. K.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Tuck, S.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[Crossref] [PubMed]

Vaupel, M.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Vizsnyiczai, G.

Vorholt, J. A.

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Vu, K. T.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

Wakamoto, Y.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref] [PubMed]

Wang, C.

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

Wang, Y.

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

Weaver, W. M.

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Whiteside, G. M.

K. L. Prime and G. M. Whiteside, “Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers,” J. Am. Chem. Soc. 115(23), 10714–10721 (1993).
[Crossref]

Wolfson, D.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

Wong, J.

J. Wong, A. Chilkoti, and V. T. Moy, “Direct force measurements of the streptavidin-biotin interaction,” Biomol. Eng. 16(1-4), 45–55 (1999).
[Crossref] [PubMed]

Wright, A. J.

Yamashita, S.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref] [PubMed]

Yasuda, K.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref] [PubMed]

Zambelli, T.

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Zheng, B. Y.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Zhu, R.

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), 3249–3267 (2010).
[Crossref] [PubMed]

Anal. Chem. (1)

J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (1)

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96(21), 213701 (2010).
[Crossref]

Appl. Surf. Sci. (1)

M. Farsari, G. Filippidis, T. S. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, “Three-dimensional biomolecule patterning,” Appl. Surf. Sci. 253(19), 8115–8118 (2007).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref] [PubMed]

Biomed. Microdevices (1)

H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomol. Eng. (1)

J. Wong, A. Chilkoti, and V. T. Moy, “Direct force measurements of the streptavidin-biotin interaction,” Biomol. Eng. 16(1-4), 45–55 (1999).
[Crossref] [PubMed]

Biophys. J. (3)

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref] [PubMed]

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[Crossref] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref] [PubMed]

Eur Phys J E Soft Matter (1)

E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, and L. Forró, “Optical trapping microrheology in cultured human cells,” Eur Phys J E Soft Matter 35(7), 63 (2012).
[Crossref] [PubMed]

Eur. Polym. J. (1)

B. L. Aekbote, J. Jacak, G. J. Schütz, E. Csányi, Zs. Szegletes, P. Ormos, and L. Kelemen, “Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures,” Eur. Polym. J. 48(10), 1745–1754 (2012).
[Crossref]

Europhys. Lett. (1)

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett. 99(5), 58004 (2012).
[Crossref]

Int. J. Robot. Res. (1)

A. Thakur, S. Chowdhury, P. Švec, C. Wang, W. Losert, and S. K. Gupta, “Indirect pushing based automated micromanipulation of biological cells using optical tweezers,” Int. J. Robot. Res. 33(8), 1098–1111 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

K. L. Prime and G. M. Whiteside, “Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers,” J. Am. Chem. Soc. 115(23), 10714–10721 (1993).
[Crossref]

J. Biophotonics (2)

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref] [PubMed]

N. Maghelli and I. M. Tolić-Nørrelykke, “Versatile laser-based cell manipulator,” J. Biophotonics 1(4), 299–309 (2008).
[Crossref] [PubMed]

J. Cell Sci. (1)

J. Helenius, C.-P. Heisenberg, H. E. Gaub, and D. J. Muller, “Single-cell force spectroscopy,” J. Cell Sci. 121(11), 1785–1791 (2008).
[Crossref] [PubMed]

J. Laser Micro/Nanoeng. (1)

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

J. Micromech. Microeng. (1)

Y. Wang, J. H. Pai, H. H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Albritton, “Surface graft polymerization of SU-8 for bio-MEMS applications,” J. Micromech. Microeng. 17(7), 1371–1380 (2007).
[Crossref]

J. R. Soc. Interface (1)

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

J. Select. Top. Quantum Electr. (1)

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” J. Select. Top. Quantum Electr. 21, 5600110 (2015).

Lab Chip (1)

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Langmuir (1)

R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. Frühwirth, and S. Howorka, “Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langmuir 22(1), 277–285 (2006).
[Crossref] [PubMed]

Microelectron. Eng. (1)

A. Selimisa, V. Mironovb, and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing,” Microelectron. Eng. 132, 83–89 (2015).
[Crossref]

Nanotechnology (1)

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[Crossref] [PubMed]

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Mater. (1)

B. L. Aekbote, F. Schubert, P. Ormos, and L. Kelemen, “Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures,” Opt. Mater. 38, 301–309 (2014).
[Crossref]

Phys. Rev. Lett. (3)

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109(3), 034104 (2012).
[Crossref] [PubMed]

J.-C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P.-F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proc. Natl. Acad. Sci. U.S.A. 97(16), 9037–9041 (2000).
[Crossref] [PubMed]

Trends Biotechnol. (1)

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, and J. A. Vorholt, “Force-controlled manipulation of single cells: from AFM to FluidFM,” Trends Biotechnol. 32(7), 381–388 (2014).
[Crossref] [PubMed]

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (1293 KB)      Sequence of indirect optical manipulation of a single cell showing the trapping of a polymerized cross, its rotation, cross-cell attachment and cell translation.
» Visualization 2: MP4 (552 KB)      Dragging of an indiretcly trapped cell with a two-photon polymerized cell manipulator along its symmetry axis.
» Visualization 3: MP4 (371 KB)      Dragging of an indiretcly trapped cell with a two-photon polymerized cell manipulator perpendicular to its symmetry axis.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Drawing of microstructures polymerized onto a glass substrate for cell adhesion experiments: cross, ellipsoid and four-spheroid manipulator. b) Scheme of the indirect trapping of a cell with a four-spheroid manipulator. The four static trapping beams are arranged on the centers of the spheroids with holographic optical tweezers.

Fig. 2
Fig. 2

Surface densities of protein layers obtained on SU-8 surfaces. a) Protein surface density obtained with the specific streptavidin coating method and measured on untreated and biotinated SU-8 and glass surfaces. b) Streptavidin and IgG surface densities measured on glutaraldehyde-treated and untreated SU-8 and glass surfaces (non-specific method).

Fig. 3
Fig. 3

Optical microscopy images of polymerized structures made for indirect cell trapping. Brightfield (a) and fluorescence (b) microscopy images of crosses and fluorescence image of four-spheroids manipulators (c) coated with fluorescent streptavidin. The structures are still attached onto their substrates, except some of the crosses. Scale bar: 10 μm.

Fig. 4
Fig. 4

Indirect optical manipulation of K562 cells (a-f) showing the sequence of the trapping and dragging of a cell with a streptavidin-coated cross (a) (see Visualization 1). The trapped cross is rotated around the optical axis by changing the polarization direction of the trapping beam (b, c). The trapped cross attaches to the cell (d). The cell is dragged around the reference cell marked with asterisk (e, f). Position distribution (g) of the center of an optically trapped ellipsoid dragging a cell; insert: the image of the ellipsoid-cell couple. Crosshairs indicate trap position.

Fig. 5
Fig. 5

Translation of an indirectly trapped K562 cell in its medium with a four-spheroid manipulator along the three coordinate axes: (a-c) dragging along the x axis (see Visualization 2), (e)-(f) along the y axis (see Visualization 3) and (h)-(j) along the z (optical) axis. The histograms on panel (d) show the displacement of the two spheroids marked with asterisk during x-drag and that on (g) shows the tilt of the entire structure during y-drag. The two lines on panel (e) indicate the maximum tilt angle. Scale bar: 10 μm.

Tables (1)

Tables Icon

Table 1 Success rate of the attachment between cells and trapped microstructures

Metrics