Abstract

We report Stimulated Emission Depletion (STED) imaging of green fluorescent nanodiamonds containing Nitrogen-Vacancy-Nitrogen (NVN) centers with a resolution of 70 nm using a commercial microscope. Nanodiamonds have been demonstrated to have the potential to be excellent cellular biomarkers thanks to their low toxicity and nonbleaching fluorescence, and are especially appealing for superresolution imaging technique like STED microscopy. However, only red fluorescent nanodiamonds containing Nitrogen-Vacancy (NV) centers have been used with STED microscopy so far. The existence of only one color nonbleaching center limits the possible observations, for instance it complicates spatial correlation studies with STED. To provide a nonbleaching probe in a different color, we characterize here the optical properties of the NVN defect for STED imaging. We demonstrate STED imaging of the green fluorescent nanodiamonds containing NVN centers, opening the door for long term two-color STED observation. Furthermore we exemplify the use of green nanodiamonds as a second color nonbleaching STED biomarker by imaging 70 nm fluorescent crystals up taken into HeLa cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope

Min Gu, Yaoyu Cao, Stefania Castelletto, Betty Kouskousis, and Xiangping Li
Opt. Express 21(15) 17639-17646 (2013)

Lifetime investigation of single nitrogen vacancy centres in nanodiamonds

Jelle Storteboom, Philip Dolan, Stefania Castelletto, Xiangping Li, and Min Gu
Opt. Express 23(9) 11327-11333 (2015)

Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures

Masazumi Fujiwara, Hong-Quan Zhao, Tetsuya Noda, Kazuhiro Ikeda, Hitoshi Sumiya, and Shigeki Takeuchi
Opt. Lett. 40(24) 5702-5705 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
    [Crossref] [PubMed]
  2. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [Crossref]
  3. K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
    [Crossref] [PubMed]
  4. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
    [Crossref] [PubMed]
  5. N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
    [Crossref] [PubMed]
  6. S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
    [Crossref] [PubMed]
  7. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
    [Crossref] [PubMed]
  8. Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
    [Crossref] [PubMed]
  9. T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
    [Crossref] [PubMed]
  10. T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
    [Crossref] [PubMed]
  11. A. M. Zaitsev, “Vibronic spectra of impurity-related optical centers in diamond,” Phys. Rev. B 61(19), 12909–12922 (2000).
    [Crossref]
  12. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
    [Crossref]
  13. M. Mission, M. F. Rate, and V. M. Model, “Measuring two key parameters of H3 color centers in diamond,” NASA Tech Briefs. 25, 24–25 (2005).
  14. T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
    [Crossref]
  15. S. C. Rand and L. G. Deshazer, “Visible color-center laser in diamond,” Opt. Lett. 10(10), 481–483 (1985).
    [Crossref] [PubMed]
  16. Y. Kuo, T.-Y. Hsu, Y.-C. Wu, J.-H. Hsu, and H.-C. Chang, “Fluorescence lifetime imaging microscopy of nanodiamonds in vivo,” in SPIE OPTO (International Society for Optics and Photonics, 2013), pp. 863503–863503–7.
  17. B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials 19(4), 314–318 (2010).
    [Crossref]
  18. J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
    [Crossref]
  19. E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
    [Crossref]
  20. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
    [Crossref] [PubMed]
  21. L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
    [Crossref] [PubMed]
  22. Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
    [Crossref] [PubMed]
  23. O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
    [Crossref] [PubMed]
  24. O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
    [Crossref]
  25. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
    [Crossref]
  26. J. Humpolícková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009).
    [Crossref] [PubMed]

2014 (1)

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
[Crossref] [PubMed]

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

2011 (3)

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

2010 (2)

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials 19(4), 314–318 (2010).
[Crossref]

N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
[Crossref] [PubMed]

2009 (7)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[Crossref]

J. Humpolícková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009).
[Crossref] [PubMed]

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

2008 (1)

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

2007 (3)

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
[Crossref]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

2006 (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

2005 (2)

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

M. Mission, M. F. Rate, and V. M. Model, “Measuring two key parameters of H3 color centers in diamond,” NASA Tech Briefs. 25, 24–25 (2005).

2000 (1)

A. M. Zaitsev, “Vibronic spectra of impurity-related optical centers in diamond,” Phys. Rev. B 61(19), 12909–12922 (2000).
[Crossref]

1985 (1)

Aulenbacher, K.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Balasubramanian, G.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Becher, C.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Benda, A.

J. Humpolícková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009).
[Crossref] [PubMed]

Bethani, I.

N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
[Crossref] [PubMed]

Börsch, M.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Boudou, J. P.

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

Boudou, J.-P.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Chang, B. M.

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

Chang, H. C.

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

Chang, H.-C.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
[Crossref] [PubMed]

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

Chang, W.-W.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Chang, Y.-T.

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

Chao, J.-I.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

Chen, K.-M.

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

Cheng, C.-A.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Chien, C.-H.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Curmi, P.

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

Curmi, P. A.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Deshazer, L. G.

Druon, F.

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

Enderlein, J.

J. Humpolícková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009).
[Crossref] [PubMed]

Erdmann, R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Faklaris, O.

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Fang, C.-Y.

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Garrot, D.

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Georges, P.

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Grotz, B.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Gruber, D.

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials 19(4), 314–318 (2010).
[Crossref]

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Gustafsson, M. G. L.

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[Crossref]

Halemani, N. D.

N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
[Crossref] [PubMed]

Han, C.-C.

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

Han, K. Y.

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Harke, B.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Heintzmann, R.

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[Crossref]

Hell, S.

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
[Crossref]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Hemmer, P. R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Hsu, H.-L.

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

Hsu, J. H.

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

Hsu, J.-H.

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

Hsu, T.-C.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

Hsu, T.-Y.

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
[Crossref] [PubMed]

Humpolícková, J.

J. Humpolícková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009).
[Crossref] [PubMed]

Hwang, E.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Jelezko, F.

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Joshi, V.

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Kang, M.-W.

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

Kolesov, R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Kuo, Y.

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
[Crossref] [PubMed]

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

Lang, T.

N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
[Crossref] [PubMed]

Liu, K.-K.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

Mau, Y.-W.

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

Medda, R.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Mission, M.

M. Mission, M. F. Rate, and V. M. Model, “Measuring two key parameters of H3 color centers in diamond,” NASA Tech Briefs. 25, 24–25 (2005).

Model, V. M.

M. Mission, M. F. Rate, and V. M. Model, “Measuring two key parameters of H3 color centers in diamond,” NASA Tech Briefs. 25, 24–25 (2005).

Naydenov, B.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Neu, E.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Plakhotnik, T.

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials 19(4), 314–318 (2010).
[Crossref]

Rand, S. C.

Rankin, B.

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
[Crossref]

Rate, M. F.

M. Mission, M. F. Rate, and V. M. Model, “Measuring two key parameters of H3 color centers in diamond,” NASA Tech Briefs. 25, 24–25 (2005).

Reuter, R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
[Crossref]

Rizzoli, S. O.

N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Sauvage, T.

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Sennour, M.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Smith, B. R.

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials 19(4), 314–318 (2010).
[Crossref]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Su, L.-J.

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

Su, W.-D.

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

Thorel, A.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Tisler, J.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Treussart, F.

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Tzeng, Y. K.

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

Tzeng, Y.-K.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

Wee, T.-L.

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

Westphal, V.

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
[Crossref]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Willig, K. I.

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Wrachtrup, J.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Wu, T.-J.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Wu, Y.-C.

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
[Crossref] [PubMed]

Yang, K.-L.

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

Yu, J.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Yu, S.-J.

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

Yu, Y.-C.

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

Zaitsev, A. M.

A. M. Zaitsev, “Vibronic spectra of impurity-related optical centers in diamond,” Phys. Rev. B 61(19), 12909–12922 (2000).
[Crossref]

ACS Nano (1)

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3(7), 1959–1965 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. Engl. 50(10), 2262–2265 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, and H.-C. Chang, “Nonblinking green emission from single H3 color centers in nanodiamonds,” Appl. Phys. Lett. 98(19), 193116 (2011).
[Crossref]

Biomaterials (1)

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials 34(33), 8352–8360 (2013).
[Crossref] [PubMed]

Biophys. J. (1)

J. Humpolícková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007).
[Crossref]

Diamond Related Materials (2)

T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond Related Materials 18(2-3), 567–573 (2009).
[Crossref]

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials 19(4), 314–318 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005).
[Crossref] [PubMed]

J. Eur. Opt. Soc Rapid Publ. (1)

O. Faklaris, D. Garrot, V. Joshi, J. P. Boudou, T. Sauvage, P. Curmi, and F. Treussart, “Comparison of photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles and observation of the diffusion of diamond nanoparticles in cells,” J. Eur. Opt. Soc Rapid Publ. 4, 09035 (2009).
[Crossref]

Nano Lett. (1)

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds,” Nanotechnology 24(31), 315702 (2013).
[Crossref] [PubMed]

NASA Tech Briefs. (1)

M. Mission, M. F. Rate, and V. M. Model, “Measuring two key parameters of H3 color centers in diamond,” NASA Tech Briefs. 25, 24–25 (2005).

Nat. Methods (2)

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nanotechnol. 8(9), 682–689 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[Crossref]

Nature (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

A. M. Zaitsev, “Vibronic spectra of impurity-related optical centers in diamond,” Phys. Rev. B 61(19), 12909–12922 (2000).
[Crossref]

Sci. Rep. (1)

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4, 5004 (2014).
[Crossref] [PubMed]

Small (1)

O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small 4(12), 2236–2239 (2008).
[Crossref] [PubMed]

Traffic (1)

N. D. Halemani, I. Bethani, S. O. Rizzoli, and T. Lang, “Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells,” Traffic 11(3), 394–404 (2010).
[Crossref] [PubMed]

Other (1)

Y. Kuo, T.-Y. Hsu, Y.-C. Wu, J.-H. Hsu, and H.-C. Chang, “Fluorescence lifetime imaging microscopy of nanodiamonds in vivo,” in SPIE OPTO (International Society for Optics and Photonics, 2013), pp. 863503–863503–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption (green plot) and emission (red plot) spectra of green nanodiamonds. The absorption spectrum is deduced from the measurement of the luminescence saturation for each excitation wavelength. The inset displays one example of saturation curve at 470 nm excitation. For this nanodiamond, the fitting of the curve results in an absorption cross section of 1.18∙10−17 cm2 (more details in Appendix A). Each point of the absorption curve is the average value over 16 gNDs and the standard deviation is indicated with error bars. The emission luminescence spectrum is measured by varying the detection window for a fixed 458 nm excitation wavelength. The emission spectrum shows a large tail at 600 nm. Each point of the emission curve is the average value over 30 gNDs and the standard deviation is indicated with error bars. The two vertical color lines indicate the wavelengths of the excitation and depletion beams used for the superresolution imaging.

Fig. 2
Fig. 2

(a) Fluorescence lifetime distribution of gNDs immobilized on a glass slide (the inset shows the fluorescence image of the gNDs). (b) Fluorescence decay trace of a single nanodiamond situated into the yellow circle in the inset image. The best fit (red curve) is obtained with a two-exponential model.

Fig. 3
Fig. 3

(a) Fluorescence inhibition curve of single gND as a function of the depletion CW beam intensity. The depletion intensity necessary to switch-off half of the luminescence characterizes the steepness of the curve and is directly related to the stimulated emission cross section. (b) Stimulated emission cross section values in function of the wavelength (color dots) derived from the emission spectrum measurement (black line). The value at 590 nm is in good agreement with the one derived from the depletion curve (red cross).

Fig. 4
Fig. 4

(a) Consecutive confocal and continuous STED imaging of 70 nm sized nanodiamonds immobilized on a glass slide. The increase in resolution leads to reveal details blurred in the conventional confocal images. The inset on the first images is the profile along the particle indicated with an arrow. It allows for the estimation of the resolution given by STED to be at least 70 nm for a particle bigger than 50 nm (cf. Appendix B). The multiple scans illustrate the perfect photostability. Even if for the STED scan images, high depletion intensity was used (I = 130 MW/cm2, 256 × 256 pixels with 3 ms dwell time), no change in the recorded signal level is observed after 100 scans. (b) Confocal and STED image revealing the inhomogeneity of the nanoparticles and their tendency to aggregate. Scale bars are 500 nm.

Fig. 5
Fig. 5

Superresolution imaging of gNDs up-taken into HeLa cell. The main image is a linear confocal scan. The cell membrane is tagged in red with an organic dye (WGA, Alexa Fluor 680, life technologies), the gNDs appear green and the absence of fluorescence inside the cells reveals the positions of the nuclei. The membrane labelling shows that the confocal section is situated inside the cell and thus it evidences the presence of the nanodiamonds inside the cell. The two insets are magnified images of the highlighted area of the cell. The STED imaging resolves more details about the nanocrystals. Scale bars are 5 μm in the main image and 500 nm in the insets.

Fig. 6
Fig. 6

Absorption spectrum measurement (a) Setup: we use a white light laser (WLL) and a tunable filter (TF) to vary the excitation wavelength. For different excitation intensity and wavelength the fluorescence of the gNDs is filtered out the dichroic mirror (DM) and a long pass filter (LP) and recorded by a CCD. (b) In order to derive the value of the absorption cross section from the fluorescence saturation measurement, we represent the gNDs with two energy levels (the excited state S1 and the ground state S0). kf is the fluorescence rate (we measured the average lifetime (τf) in Fig. 2, kf = 1/ τf). The WLL is a pulsed source, we assume a constant excitation rate during the pulse, so the excitation rate during the pulse is k ex = σ abs I exc T rep / T p .

Fig. 7
Fig. 7

(a) Scanning electron microscope images of the gNDs. Sparse samples are obtained with gNDs solution of 0.01 mg.mL−1. Scale bar is 500 nm. (b) Size (diameter) distribution of the gNDs. (c) Brightness distribution of the gNDs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I fluo α k ex k f + k ex ( T p T rep + k ex T rep k f ( k f + k ex ) ( 1 e ( k f + k ex ) T p ) )

Metrics