Abstract

Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI)

Adrien Ponticorvo, David M. Burmeister, Bruce Yang, Bernard Choi, Robert J. Christy, and Anthony J. Durkin
Biomed. Opt. Express 5(10) 3467-3481 (2014)

Hyperspectral index-based metric for burn depth assessment

Sorin Viorel Parasca, Mihaela Antonina Calin, Dragos Manea, Sorin Miclos, and Roxana Savastru
Biomed. Opt. Express 9(11) 5778-5791 (2018)

Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis

Ajay Sadhwani, Kevin T. Schomacker, Guillermo J. Tearney, and Norman S. Nishioka
Appl. Opt. 35(28) 5727-5735 (1996)

References

  • View by:
  • |
  • |
  • |

  1. A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
    [Crossref] [PubMed]
  2. S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
    [Crossref] [PubMed]
  3. K. M. Cross, “Assessment of tissue viability in acute thermal injuries using near infrared point spectroscopy,” (PhD dissertation, University of Toronto, 2010).
  4. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
    [Crossref] [PubMed]
  5. Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
    [Crossref] [PubMed]
  6. S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
    [Crossref] [PubMed]
  7. H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
    [Crossref] [PubMed]
  8. Moor Instruments, “Burn depth assessment using laser Doppler imaging,“ http://gb.moorclinical.com/page/professional/faq/7 (December 17th, 2015).
  9. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
    [Crossref] [PubMed]
  10. A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
    [Crossref] [PubMed]
  11. S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
    [Crossref] [PubMed]
  12. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  13. D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
    [Crossref]
  14. I. Remer and A. Bilenca, “Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone,” J. Biophotonics 8(11-12), 902–907 (2015).
    [Crossref] [PubMed]
  15. A. Sadhwani, K. T. Schomacker, G. J. Tearney, and N. S. Nishioka, “Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis,” Appl. Opt. 35(28), 5727–5735 (1996).
    [Crossref] [PubMed]
  16. G. J. Tearney and B. E. Bouma, “Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis,” Opt. Lett. 27(7), 533–535 (2002).
    [Crossref] [PubMed]
  17. S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
    [Crossref] [PubMed]
  18. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
    [PubMed]
  19. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
    [Crossref] [PubMed]
  20. L. M. Richards, S. M. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4(10), 2269–2283 (2013).
    [Crossref] [PubMed]
  21. L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34(13), 2362–2366 (1995).
    [Crossref] [PubMed]
  22. F. Kamran and P. E. Andersen, “Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations,” Appl. Opt. 54(23), 7099–7105 (2015).
  23. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
    [Crossref]
  24. ANSI (American National Standards Institute), “American national standard for safe use of lasers,” ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007).
  25. GSMArena, “Sony Ericsson Xperia Arc,” http://www.gsmarena.com/sony_ericsson_xperia_arc-3619.php (October 18th, 2015).
  26. S. C. Feng, F.-A. Zeng, and B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” Proc. SPIE 2389, 54–63 (1995).
    [Crossref]
  27. I. E. Richardson, The H.264 Advanced Video Compression Standard (Wiley, 2010), Chap. 4.
  28. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  29. X. Wang and R. M. Kimble, “A review on porcine burn and scar models and their relevance to humans,” Wound Pract Res. 18(1), 41–49 (2010).
  30. P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
    [Crossref] [PubMed]

2015 (3)

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

I. Remer and A. Bilenca, “Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone,” J. Biophotonics 8(11-12), 902–907 (2015).
[Crossref] [PubMed]

F. Kamran and P. E. Andersen, “Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations,” Appl. Opt. 54(23), 7099–7105 (2015).

2014 (2)

2013 (3)

2012 (1)

2011 (1)

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

2010 (3)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

X. Wang and R. M. Kimble, “A review on porcine burn and scar models and their relevance to humans,” Wound Pract Res. 18(1), 41–49 (2010).

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

2009 (1)

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

2008 (1)

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

2006 (1)

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

2005 (1)

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

2004 (1)

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

2002 (1)

2001 (1)

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

1997 (1)

1996 (1)

1995 (2)

L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34(13), 2362–2366 (1995).
[Crossref] [PubMed]

S. C. Feng, F.-A. Zeng, and B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” Proc. SPIE 2389, 54–63 (1995).
[Crossref]

1993 (1)

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Alhava, E.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Andersen, P. E.

Bi, R.

Bilenca, A.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

I. Remer and A. Bilenca, “Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone,” J. Biophotonics 8(11-12), 902–907 (2015).
[Crossref] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

Black, M. J.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Blondeel, P.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

Boas, D. A.

Bouma, B. E.

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

G. J. Tearney and B. E. Bouma, “Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis,” Opt. Lett. 27(7), 533–535 (2002).
[Crossref] [PubMed]

Bray, R. C.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Burmeister, D. M.

Byrne, P. O.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

Chance, B.

S. C. Feng, F.-A. Zeng, and B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” Proc. SPIE 2389, 54–63 (1995).
[Crossref]

Choi, B.

Christy, R. J.

Cinat, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Davis, J. L.

Dong, J.

Dronov, V.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Dunn, A. K.

Durkin, A. J.

Essex, T. J.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Feng, S. C.

S. C. Feng, F.-A. Zeng, and B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” Proc. SPIE 2389, 54–63 (1995).
[Crossref]

Forrester, K. R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Frank, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Hamdi, M.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Härmä, M.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Hazan, S.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Hoeksema, H.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

Jacques, S. L.

Jakovels, D.

D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
[Crossref]

Kaiser, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Kamran, F.

Kazmi, S. M.

Kimble, R. M.

X. Wang and R. M. Kimble, “A review on porcine burn and scar models and their relevance to humans,” Wound Pract Res. 18(1), 41–49 (2010).

Kiraly, K.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Krievina, G.

D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
[Crossref]

Lahtinen, T.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Lee, K.

Li, N.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

Lindsay, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

McLean, N. R.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Miao, P.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

Monstrey, S.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

Nadkarni, S. K.

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

Niazi, Z. B.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Nishioka, N. S.

Olin, K. E.

Pape, S. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

Papini, R.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Papp, A.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Pirayesh, A.

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

Ponticorvo, A.

Ragol, S.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Rege, A.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

Remer, I.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

I. Remer and A. Bilenca, “Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone,” J. Biophotonics 8(11-12), 902–907 (2015).
[Crossref] [PubMed]

Richards, L. M.

Rosenberg, L.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Sadhwani, A.

Saknite, I.

D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
[Crossref]

Schomacker, K. T.

Scott, D.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

Shoham, Y.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Sinelnikov, I.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Skouras, C. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

Spigulis, J.

D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
[Crossref]

Stewart, C. J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Tearney, G. J.

Thakor, N. V.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

Tondu, T.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Tong, S.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

Tulip, J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Uusaro, A.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Van de Sijpe, K.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Van Landuyt, K.

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Verbelen, J.

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

Wang, L.

Wang, X.

X. Wang and R. M. Kimble, “A review on porcine burn and scar models and their relevance to humans,” Wound Pract Res. 18(1), 41–49 (2010).

Willenz, U.

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

Yafi, A.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Yang, B.

Yang, O.

Yodh, A. G.

Zaharans, J.

D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
[Crossref]

Zeng, F.-A.

S. C. Feng, F.-A. Zeng, and B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” Proc. SPIE 2389, 54–63 (1995).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Burns (7)

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[Crossref] [PubMed]

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

H. Hoeksema, K. Van de Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, and P. Blondeel, “Assessment of burn depth and burn wound healing potential,” Burns 34(6), 761–769 (2008).
[Crossref] [PubMed]

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Trans. Biomed. Eng. 57(5), 1152–1157 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca, “Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager,” J. Biomed. Opt. 20(8), 086009 (2015).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

I. Remer and A. Bilenca, “Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone,” J. Biophotonics 8(11-12), 902–907 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Proc. SPIE (2)

S. C. Feng, F.-A. Zeng, and B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” Proc. SPIE 2389, 54–63 (1995).
[Crossref]

D. Jakovels, I. Saknite, G. Krievina, J. Zaharans, and J. Spigulis, “Mobile phone based laser speckle contrast imager for assessment of skin blood flow,” Proc. SPIE 9421, 94210J (2014).
[Crossref]

Wound Pract Res. (1)

X. Wang and R. M. Kimble, “A review on porcine burn and scar models and their relevance to humans,” Wound Pract Res. 18(1), 41–49 (2010).

Other (5)

I. E. Richardson, The H.264 Advanced Video Compression Standard (Wiley, 2010), Chap. 4.

ANSI (American National Standards Institute), “American national standard for safe use of lasers,” ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007).

GSMArena, “Sony Ericsson Xperia Arc,” http://www.gsmarena.com/sony_ericsson_xperia_arc-3619.php (October 18th, 2015).

Moor Instruments, “Burn depth assessment using laser Doppler imaging,“ http://gb.moorclinical.com/page/professional/faq/7 (December 17th, 2015).

K. M. Cross, “Assessment of tissue viability in acute thermal injuries using near infrared point spectroscopy,” (PhD dissertation, University of Toronto, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Camera-phone diffuse reflectance laser speckle detection and analysis (dr-LSD) for burn diagnosis. (a) Experimental setup and tissue phantom schematics. PL1/2, crossed polarizers; FL, focusing lens; ZL, 10 × zoom lens; Δz, static-layer thickness; IL, Intralipid perfused layer. (b) Time-integrated dr-LS images of tissue phantoms with Δz1 = 0.1 mm (left panel) and Δz2 = 1 mm (right panel). r0 is the radial transition between sharp and blurred speckle patterns in these images. D = 2r0 defines the spot diameter where deeper burns result in larger D values as illustrated by the tissue light propagation schematics (D1<D2). (c) Spatiotemporal fluctuation analysis of the raw speckle data involved computation of the σ ¯ s (x,y) map (left panel), calculation of the σ ¯ s (r,φ) φ profile (middle panel) and determination of D (right panel).
Fig. 2
Fig. 2 Representative digital images of H&E-stained slides of (a) 10-s, (b) 20-s, (c) 30-s, and (d) 40-s burns. Burn depth, indicated by the two-sided arrow, was evaluated by the deepest predetermined histopathological criteria identified in the slides. The single asterisk denotes empty cavity of the pilosebaceous unit, the diamond indicates separation of collagen fibers (edema), double asterisks identify vascular congestion, and the triangle points to eosinophilia of collagen fibers through the dermis. The scale bar is 1 mm.
Fig. 3
Fig. 3 Selection of threshold σ ¯ T and number of angles N in camera-phone dr-LSD of burns. (a) σ ¯ s (r,φ) φ profiles measured for purely Brownian tissue phantoms with static-layer thicknesses of Δz = 0.1-1 mm. Thresholds are indicated by the different shapes. The speckle spot diameter, D, defined as the distance between the two interceptions of σ ¯ s φ with the fixed threshold is exemplified for the purple profile. (b) D against Δz for the various thresholds (measurements are in symbols and linear fits in lines). Diameters are averages of five repeated measurements. Standard errors were negligible. (c) D (top panel) and its coefficient of variation (bottom panel) as a function of the number of azimuthal angles N used to compute σ ¯ s φ profiles of a 1-mm-thick simulated burn. Diameters were retrieved at 50% threshold. Means (red crosses) and standard errors (error bars) were computed over five repeated measurements.
Fig. 4
Fig. 4 Bar graphs of mean and standard error of speckle spot diameter by static-layer thickness of tissue phantoms at various blood perfusion conditions and under (a) low and (b) high incident intensity. Burns phantoms with static-layer thicknesses of Δz = 0.25, 0.5, and 1 mm, and normal skin phantom with a static-layer thickness of Δz = 0.1 mm were used with Intralipid flow speeds of v = 0, 1, and 3 mm-s−1 in the perfused layer. Pure Brownian motion (BM) of Intralipid occurs for v = 0 mm-s−1. Speckle spot diameter data was computed from σ ¯ s φ profiles at 50% threshold of purely Brownian normal skin phantoms. Five repeated measurements were used to generate the mean and standard error of each data point. Triangles indicate least-squares linear fit slopes of the data.
Fig. 5
Fig. 5 Bar graphs of mean and standard error of histopathological burn depth by probe-skin contact time at 8, 32, and 104 hpb. For each contact time and time post-burn, the number of burns biopsied was 4. Horizontal light-blue bracket and red lines mark statistically significantly different burn groups (P<0.05) tested using histopathological burn depth measurements at 8 hpb and averaged over time post-burn, respectively.
Fig. 6
Fig. 6 Representative dr-LS images of porcine burn wounds with probe-skin contact times of (a) 10 s, (b) 20 s, (c) 30 s, and (d) 40 s. The images were recorded at 8 hpb under irradiance of 0.77 W-cm−2. The red circles mark the retrieved speckle spot diameters of the burns. The scale bar is 2 mm. (e) σ ¯ s φ profiles for burns of different contact time. The dashed line indicates the fixed 50% threshold used to recover the speckle spot diameters. The 50% threshold value was equal to half the maximum value recorded for a σ ¯ s φ profile of in vivo normal porcine skin under high irradiance.
Fig. 7
Fig. 7 Bar graphs of mean and standard error of speckle spot diameter by probe-skin contact time at 8, 32, and 104 hpb and under (a) low and (b) high incident irradiance. The number of burns used in the statistical analysis was as follows. At 8 hpb, 46 burns (12 burns at 10 and 20-s contact time, and 11 burns at 30 and 40-s contact time); at 32 hpb, 30 burns (8 burns at 10 and 20-s contact time, and 7 burns at 30 and 40-s contact time); and at 104 hpb, 14 burns (4 burns at 10 and 20-s contact time, and 3 burns at 30 and 40-s contact time).

Tables (1)

Tables Icon

Table 1 Tukey’s post-hoc pairwise comparison matrices of burn groups and hours post-burna

Metrics