Abstract

Recent studies reveal that measurements of retinal nerve fiber layer (RNFL) reflectance provide more sensitive detection of glaucomatous damage than RNFL thickness, but most do not consider directional reflectance of the RNFL, an important source of variability. This study quantitatively compared RNFL directional reflectance, represented by an angular spread function (ASF), measured at different scattering angles, different wavelengths and different distances from the optic nerve head (ONH) and for bundles with different thicknesses (T). An ASF was characterized by its amplitude (A) and width (W). Internal reflectance of a bundle was expressed as A/T. The study found that A varied significantly with scattering angle and wavelength and that A/T was different among bundles but constant along the same bundle, indicating that the internal structure of axons may vary among bundles but does not change with distance. This study also found that W was larger near the ONH and at longer wavelengths, but did not depend on scattering angle or T. Because a 4.3° change in incident angle can change reflected intensity by a factor of 2.7, accounting for directional reflectance should improve the accuracy and reproducibility of RNFL reflectance measurements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diattenuation and polarization preservation of retinal nerve fiber layer reflectance

Xiang-Run Huang and Robert W. Knighton
Appl. Opt. 42(28) 5737-5743 (2003)

Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer

Andreas W. Dreher, Klaus Reiter, and Robert N. Weinreb
Appl. Opt. 31(19) 3730-3735 (1992)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
    [Crossref] [PubMed]
  3. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
    [Crossref] [PubMed]
  4. G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
    [Crossref] [PubMed]
  5. D. Huang and A. Kirschbaum, “Glaucoma diagnosis based on nerve fiber layer signal ratio in optical coherence tomography,” presented at the Second Annual Meeting on Optical Coherence Tomography, Long Boat Key, FL2000.
  6. M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
    [Crossref] [PubMed]
  7. X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
    [Crossref] [PubMed]
  8. J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
    [Crossref] [PubMed]
  9. J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
    [Crossref] [PubMed]
  10. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
    [Crossref] [PubMed]
  11. S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).
  12. A. J. Weber, P. L. Kaufman, and W. C. Hubbard, “Morphology of single ganglion cells in the glaucomatous primate retina,” Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998).
    [PubMed]
  13. T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
    [Crossref] [PubMed]
  14. T. Taniguchi, M. Shimazawa, and H. Hara, “Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models,” Brain Res. 1013(2), 241–248 (2004).
    [Crossref] [PubMed]
  15. C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
    [Crossref] [PubMed]
  16. B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
    [Crossref] [PubMed]
  17. X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
    [Crossref] [PubMed]
  18. M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
    [PubMed]
  19. C. T. Fu and D. Sretavan, “Laser-induced ocular hypertension in albino CD-1 mice,” Invest. Ophthalmol. Vis. Sci. 51(2), 980–990 (2010).
    [Crossref] [PubMed]
  20. X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
    [Crossref] [PubMed]
  21. R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
    [PubMed]
  22. X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
    [Crossref] [PubMed]
  23. B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
    [Crossref] [PubMed]
  24. R. W. Knighton, C. Baverez, and A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
    [PubMed]
  25. R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
    [PubMed]
  26. R. W. Knighton and C. Qian, “An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements,” J. Glaucoma 9(1), 56–62 (2000).
    [Crossref] [PubMed]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  28. B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
    [Crossref] [PubMed]
  29. R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
    [Crossref] [PubMed]
  30. X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
    [Crossref] [PubMed]
  31. X.-R. Huang and R. W. Knighton, “Fixed retina as a tissue phantom for the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 42, 694 (2001).
  32. R. W. Knighton and Q. Zhou, “The relation between the reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4(2), 117–123 (1995).
    [Crossref] [PubMed]
  33. Q. Zhou and R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36(10), 2273–2285 (1997).
    [Crossref] [PubMed]
  34. R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
    [Crossref] [PubMed]
  35. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
    [Crossref] [PubMed]
  36. Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).
  37. X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
    [Crossref] [PubMed]
  38. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
    [Crossref] [PubMed]
  39. X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).
  40. X.-R. Huang, Y. Z. Spector, and M. Castellanos, “Reflectance spectrum and birefringence of retinal nerve fiber layer in hypertensive retinas,” Invest. Ophthalmol. Vis. Sci. 56, 4557 (2015).
  41. M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
    [Crossref] [PubMed]

2015 (3)

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).

X.-R. Huang, Y. Z. Spector, and M. Castellanos, “Reflectance spectrum and birefringence of retinal nerve fiber layer in hypertensive retinas,” Invest. Ophthalmol. Vis. Sci. 56, 4557 (2015).

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

2014 (2)

X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

2012 (3)

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
[Crossref] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
[Crossref] [PubMed]

2011 (3)

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[Crossref] [PubMed]

X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[Crossref] [PubMed]

2010 (2)

C. T. Fu and D. Sretavan, “Laser-induced ocular hypertension in albino CD-1 mice,” Invest. Ophthalmol. Vis. Sci. 51(2), 980–990 (2010).
[Crossref] [PubMed]

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[Crossref] [PubMed]

2009 (3)

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[Crossref] [PubMed]

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

2008 (3)

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[Crossref] [PubMed]

2006 (1)

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

2005 (2)

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[Crossref] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

2004 (3)

T. Taniguchi, M. Shimazawa, and H. Hara, “Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models,” Brain Res. 1013(2), 241–248 (2004).
[Crossref] [PubMed]

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

2003 (1)

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

2001 (1)

X.-R. Huang and R. W. Knighton, “Fixed retina as a tissue phantom for the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 42, 694 (2001).

2000 (2)

R. W. Knighton and C. Qian, “An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements,” J. Glaucoma 9(1), 56–62 (2000).
[Crossref] [PubMed]

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

1999 (2)

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[Crossref] [PubMed]

1998 (2)

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

A. J. Weber, P. L. Kaufman, and W. C. Hubbard, “Morphology of single ganglion cells in the glaucomatous primate retina,” Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998).
[PubMed]

1997 (1)

1995 (3)

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

R. W. Knighton and Q. Zhou, “The relation between the reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4(2), 117–123 (1995).
[Crossref] [PubMed]

1992 (1)

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Alarcón-Martínez, L.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Arya, A. V.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

Avilés-Trigueros, M.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Aydin, A.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Bagga, H.

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
[Crossref] [PubMed]

Balaratnasingam, C.

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

Bass, L.

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

Baumann, B.

Baverez, C.

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

Bhattacharya, A.

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

Boustany, N. N.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[Crossref] [PubMed]

Buckingham, B. P.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Calkins, D. J.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Carroll, J.

B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[Crossref] [PubMed]

Castellanos, M.

X.-R. Huang, Y. Z. Spector, and M. Castellanos, “Reflectance spectrum and birefringence of retinal nerve fiber layer in hypertensive retinas,” Invest. Ophthalmol. Vis. Sci. 56, 4557 (2015).

Cavuoto, L. N.

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

Cense, B.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

Chalut, K. J.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

Cioffi, G. A.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[Crossref] [PubMed]

Cringle, S. J.

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

Cull, G.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[Crossref] [PubMed]

de Boer, J. F.

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
[Crossref] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

de la Villa, P.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Demirel, S.

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).

Dou, H. L.

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

Dwelle, J.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Feuer, W. J.

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fortune, B.

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[Crossref] [PubMed]

Fu, C. T.

C. T. Fu and D. Sretavan, “Laser-induced ocular hypertension in albino CD-1 mice,” Invest. Ophthalmol. Vis. Sci. 51(2), 980–990 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gardiner, S. K.

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).

Giacomelli, M. G.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[Crossref] [PubMed]

Greenfield, D. S.

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
[Crossref] [PubMed]

Gregori, G.

X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gürses-Ozden, R.

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

Hara, H.

T. Taniguchi, M. Shimazawa, and H. Hara, “Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models,” Brain Res. 1013(2), 241–248 (2004).
[Crossref] [PubMed]

Hee, M. R.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hertzmark, E.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Hitzenberger, C. K.

Ho, D.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Horner, P. J.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, X.

X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[Crossref] [PubMed]

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Huang, X.-R.

X.-R. Huang, Y. Z. Spector, and M. Castellanos, “Reflectance spectrum and birefringence of retinal nerve fiber layer in hypertensive retinas,” Invest. Ophthalmol. Vis. Sci. 56, 4557 (2015).

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[Crossref] [PubMed]

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[Crossref] [PubMed]

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Fixed retina as a tissue phantom for the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 42, 694 (2001).

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[Crossref] [PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

Hubbard, W. C.

A. J. Weber, P. L. Kaufman, and W. C. Hubbard, “Morphology of single ganglion cells in the glaucomatous primate retina,” Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998).
[PubMed]

Inman, D. M.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Ishikawa, H.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

Izatt, J. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Jiménez-López, M.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Kaufman, P. L.

A. J. Weber, P. L. Kaufman, and W. C. Hubbard, “Morphology of single ganglion cells in the glaucomatous primate retina,” Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998).
[PubMed]

Knighton, R. W.

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[Crossref] [PubMed]

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[Crossref] [PubMed]

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Fixed retina as a tissue phantom for the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 42, 694 (2001).

R. W. Knighton and C. Qian, “An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements,” J. Glaucoma 9(1), 56–62 (2000).
[Crossref] [PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[Crossref] [PubMed]

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Q. Zhou and R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36(10), 2273–2285 (1997).
[Crossref] [PubMed]

R. W. Knighton and Q. Zhou, “The relation between the reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4(2), 117–123 (1995).
[Crossref] [PubMed]

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

Kong, W.

X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[Crossref] [PubMed]

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

Lai, E.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Lambert, W.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Lemij, H. G.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
[Crossref] [PubMed]

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
[Crossref] [PubMed]

Liebmann, J. M.

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

Lin, C. P.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J.

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

Liu, S.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Lujan, B. J.

B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[Crossref] [PubMed]

Makihira, T.

Maravich, P. L.

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

Markey, M. K.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Marsh-Armstrong, N.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Mattox, C.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

McElroy, A.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Milner, T.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Morgan, W. H.

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

Oglesby, E.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Ortín-Martínez, A.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Ostrander, J. H.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[Crossref] [PubMed]

Park, B. H.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

Pasternack, R. M.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[Crossref] [PubMed]

Paunescu, L. A.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

Pircher, M.

Pons, M. E.

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

Price, L. L.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qian, C.

R. W. Knighton and C. Qian, “An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements,” J. Glaucoma 9(1), 56–62 (2000).
[Crossref] [PubMed]

Reynaud, J.

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).

Ritch, R.

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

Roberts, P.

Roorda, A.

B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[Crossref] [PubMed]

Rylander, H. G.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Salinas-Navarro, M.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Sato, M.

Schuman, J. S.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shimazawa, M.

T. Taniguchi, M. Shimazawa, and H. Hara, “Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models,” Brain Res. 1013(2), 241–248 (2004).
[Crossref] [PubMed]

Shou, T.

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

Spector, Y. Z.

X.-R. Huang, Y. Z. Spector, and M. Castellanos, “Reflectance spectrum and birefringence of retinal nerve fiber layer in hypertensive retinas,” Invest. Ophthalmol. Vis. Sci. 56, 4557 (2015).

X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

Sretavan, D.

C. T. Fu and D. Sretavan, “Laser-induced ocular hypertension in albino CD-1 mice,” Invest. Ophthalmol. Vis. Sci. 51(2), 980–990 (2010).
[Crossref] [PubMed]

Stark, P. C.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Steele, M. R.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sugita, M.

Swanson, E. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taniguchi, T.

T. Taniguchi, M. Shimazawa, and H. Hara, “Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models,” Brain Res. 1013(2), 241–248 (2004).
[Crossref] [PubMed]

Tomatsu, N.

Valiente-Soriano, F. J.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

van der Schoot, J.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
[Crossref] [PubMed]

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
[Crossref] [PubMed]

Vass, C.

Vermeer, K. A.

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
[Crossref] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
[Crossref] [PubMed]

Vetter, M. L.

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Vidal-Sanz, M.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Villegas-Pérez, M. P.

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Wang, B.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Wang, L.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[Crossref] [PubMed]

Wang, W.

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

Wax, A.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[Crossref] [PubMed]

Weber, A. J.

A. J. Weber, P. L. Kaufman, and W. C. Hubbard, “Morphology of single ganglion cells in the glaucomatous primate retina,” Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998).
[PubMed]

Wollstein, G.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Wong, C.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Yu, D.-Y.

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

Zhao, K.

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

Zhao, Q.

X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

Zhao, X.

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).

Zheng, J.-Y.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[Crossref] [PubMed]

Zhou, Q.

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Q. Zhou and R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36(10), 2273–2285 (1997).
[Crossref] [PubMed]

R. W. Knighton and Q. Zhou, “The relation between the reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4(2), 117–123 (1995).
[Crossref] [PubMed]

Zhou, Y.

X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[Crossref] [PubMed]

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

Zotter, S.

Appl. Opt. (1)

Arch. Ophthalmol. (3)

M. E. Pons, H. Ishikawa, R. Gürses-Ozden, J. M. Liebmann, H. L. Dou, and R. Ritch, “Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography,” Arch. Ophthalmol. 118(8), 1044–1047 (2000).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Brain Res. (1)

T. Taniguchi, M. Shimazawa, and H. Hara, “Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models,” Brain Res. 1013(2), 241–248 (2004).
[Crossref] [PubMed]

Cancer Res. (1)

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[Crossref] [PubMed]

Cell Health Cyto. (1)

Y. Z. Spector, Q. Zhao, X. Zhao, W. J. Feuer, P. L. Maravich, and X.-R. Huang, “Classification of axonal subtypes based on cytoskeletal components,” Cell Health Cyto. 6, 1–10 (2014).

Curr. Opin. Ophthalmol. (1)

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995).
[Crossref] [PubMed]

Exp. Eye Res. (1)

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (21)

C. Balaratnasingam, W. H. Morgan, L. Bass, S. J. Cringle, and D.-Y. Yu, “Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins,” Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008).
[Crossref] [PubMed]

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2424–2430 (2012).
[Crossref] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012).
[Crossref] [PubMed]

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in retinal nerve fiber layer reflectance intensity are related to functional loss in glaucoma,” Invest. Ophthalmol. Vis. Sci. 56, 2057 (2015).

A. J. Weber, P. L. Kaufman, and W. C. Hubbard, “Morphology of single ganglion cells in the glaucomatous primate retina,” Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998).
[PubMed]

T. Shou, J. Liu, W. Wang, Y. Zhou, and K. Zhao, “Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma,” Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003).
[Crossref] [PubMed]

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004).
[Crossref] [PubMed]

B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[Crossref] [PubMed]

X.-R. Huang and R. W. Knighton, “Fixed retina as a tissue phantom for the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 42, 694 (2001).

C. T. Fu and D. Sretavan, “Laser-induced ocular hypertension in albino CD-1 mice,” Invest. Ophthalmol. Vis. Sci. 51(2), 980–990 (2010).
[Crossref] [PubMed]

X. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[Crossref] [PubMed]

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[Crossref] [PubMed]

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

X.-R. Huang, Y. Z. Spector, X. Zhao, and Q. Zhao, “Birefringence of retinal nerve fiber layer: correlation with degrees of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 55, 4774 (2014).

X.-R. Huang, Y. Z. Spector, and M. Castellanos, “Reflectance spectrum and birefringence of retinal nerve fiber layer in hypertensive retinas,” Invest. Ophthalmol. Vis. Sci. 56, 4557 (2015).

J. Biomed. Opt. (2)

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref] [PubMed]

J. Glaucoma (3)

R. W. Knighton and Q. Zhou, “The relation between the reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4(2), 117–123 (1995).
[Crossref] [PubMed]

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[Crossref] [PubMed]

R. W. Knighton and C. Qian, “An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements,” J. Glaucoma 9(1), 56–62 (2000).
[Crossref] [PubMed]

J. Neurosci. (1)

B. P. Buckingham, D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner, “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” J. Neurosci. 28(11), 2735–2744 (2008).
[Crossref] [PubMed]

Mol. Vis. (1)

M. Salinas-Navarro, L. Alarcón-Martínez, F. J. Valiente-Soriano, A. Ortín-Martínez, M. Jiménez-López, M. Avilés-Trigueros, M. P. Villegas-Pérez, P. de la Villa, and M. Vidal-Sanz, “Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice,” Mol. Vis. 15, 2578–2598 (2009).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

D. Huang and A. Kirschbaum, “Glaucoma diagnosis based on nerve fiber layer signal ratio in optical coherence tomography,” presented at the Second Annual Meeting on Optical Coherence Tomography, Long Boat Key, FL2000.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Photograph of multispectral imaging microreflectometer (IMR). 1. Retinal chamber with a spherical window. 2. Translation and rotation stages for adjusting bundle position and orientation. 3. Light source probe. 4. Detection probe with a CCD camera (not shown). 5 and 6. Angle gauges for azimuth and elevation angles of the light source. Inset: the laboratory coordinate system.
Fig. 2
Fig. 2 (A) Geometry of light scattering by a cylinder. The light scattered by a cylinder is confined to a conical sheet coaxial with the cylinder axis. The apex angle of the cone is twice the angle between the cylinder axis and the incident ray. Definitions of the incident angle (θ), scattering angle (φ), and the incident and scattering planes are given in the text. (B) Illustration of angular spread functions. Misalignment of cylinders in a scattering array broadens the infinitesimally thin sheet shown in A. The finite apertures of the light source and camera also spread the measured cone. The actual measured spread function (ASF) is the convolution of the angular spreads due to cylinder misalignment and the finite apertures of the light source and camera.
Fig. 3
Fig. 3 Image registration and measurement of bundle thickness. (A) and (B) En face images taken by the confocal microscope and imaging microreflectometer. The confocal image (A) is registered onto the reflectance image (B) by matching blood vessel patterns. The confocal image shows stained microtubules (MTs) and is displayed as 60% transparency to reveal the underlying reflectance image. The reflectance image was taken at wavelength λ = 440 nm. (C) Cross-sectional image along the dashed line in (A). Red: stained MTs, blue: stained nuclei. (D) Bundle thickness measured from the image in (C). The vertical dashed lines show the window used for calculating bundle thickness.
Fig. 4
Fig. 4 Directional reflectance of retinal nerve fiber bundles. (A) Reflectance image of bundles measured at on-peak reflectance with the light source elevation angle Θ = 20° and wavelength λ = 500 nm. Black boxes mark the areas on one bundle at which RNFL reflectance was analyzed. The incident angle θ and scattering angle φ for this area were 12° and 177°, respectively. White boxes mark the gaps between bundles; the reflectance of gap areas was used to estimate the reflectance of tissue underlying the bundle areas. (B) Image of the same retinal area shown in (A) but measured at off-peak reflectance (Θ = 45°) with θ = 22° and φ = 178°. Bundles nearly disappear. Image contrast has been enhanced. (C) Angular spread of the marked areas in (A). The filled circles correspond to the images in (A) and (B). Gap reflectance did not change very much with the elevation angle of the light source. The total number of pixels for the bundle and gap areas was 100 and 180, respectively.
Fig. 5
Fig. 5 Dependence of angular spread function on scattering angle. (A) Angular spread functions (ASF) of a bundle area measured at three φ. (B) and (C) Fitted magnitude A and half-width W of the ASF of eight bundles with each measured at three different φ. Gray bars show the grouping of the data based on φ. The black squares are the mean ± SE of each group. θ at on-peak reflectance was between 12° and 20°. All bundles were measured at r = 300 μm and λ = 500 nm.
Fig. 6
Fig. 6 Angular spread function along one bundle. (A) Angular spread functions measured along a bundle at the distances of r = 200, 300 and 400 μm from the ONH center and wavelength λ = 500 nm. θ = 12° – 14° and φ = 171° – 172°. (B) Cross-sectional image of the studied bundle in (A). Red: stained MTs, blue: stained nuclei. Vertical lines: bundle thickness at r = 200, 300 and 400 μm. Scale bar: 50 μm for horizontal and 25 μm for vertical.
Fig. 7
Fig. 7 Comparison of the azimuthal variation of RNFL attenuation coefficients measured in the human eye by Vermeer, et al. [10] (dashed line, left Y-axis) and RNFL reflectance calculated by Knighton and Qian [26] (solid line, right Y-axis). T: temporal; I: inferior; N: nasal; S: superior.

Tables (3)

Tables Icon

Table 1 Angular spread function measured along bundles

Tables Icon

Table 2 Average amplitude and half-width of angular spread functions at different wavelengths

Tables Icon

Table 3 Reflectance per unit thickness at λ = 500 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R λ = γ λ P P w t w t

Metrics