Abstract

Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep UV resonant Raman spectroscopy for photodamage characterization in cells

Yasuaki Kumamoto, Atsushi Taguchi, Nicholas Isaac Smith, and Satoshi Kawata
Biomed. Opt. Express 2(4) 927-936 (2011)

Raman spectroscopy: techniques and applications in the life sciences

Dustin W. Shipp, Faris Sinjab, and Ioan Notingher
Adv. Opt. Photon. 9(2) 315-428 (2017)

Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Commercially available from Shimadzu, Inc, JASCO, Inc, etc.
  2. Commercially available from Nikkiso, Inc.
  3. S. Song and S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(L-lysine), poly(L-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111(12), 4295–4305 (1989).
    [Crossref]
  4. K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
    [Crossref]
  5. Z. Chi and S. A. Asher, “UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin,” Biochemistry 37(9), 2865–2872 (1998).
    [Crossref] [PubMed]
  6. S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
    [Crossref] [PubMed]
  7. S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
    [Crossref] [PubMed]
  8. G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
    [Crossref] [PubMed]
  9. C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
    [Crossref] [PubMed]
  10. S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
    [Crossref]
  11. C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986).
    [Crossref]
  12. D. N. Nikogosyan and H. Görner, “Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light,” J. Photochem. Photobiol. B 13(3-4), 219–234 (1992).
    [Crossref]
  13. H. Görner, “Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization,” J. Photochem. Photobiol. B 26(2), 117–139 (1994).
    [PubMed]
  14. K. Lao and A. N. Glazer, “Ultraviolet-B photodestruction of a light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5258–5263 (1996).
    [Crossref] [PubMed]
  15. C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
    [Crossref] [PubMed]
  16. Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
    [Crossref]
  17. M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
    [Crossref] [PubMed]
  18. D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” in Cancer: Cell structures, carcinogens and genomic instability, L. P. Bignold, ed. (Birkhaeuser, 2006).
  19. Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep UV resonant Raman spectroscopy for photodamage characterization in cells,” Biomed. Opt. Express 2(4), 927–936 (2011).
    [Crossref] [PubMed]
  20. J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001).
    [Crossref] [PubMed]
  21. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
    [Crossref] [PubMed]
  22. B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
    [Crossref] [PubMed]
  23. M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
    [Crossref] [PubMed]
  24. M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
    [Crossref] [PubMed]
  25. Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
    [Crossref] [PubMed]
  26. B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
    [Crossref] [PubMed]
  27. S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
    [Crossref] [PubMed]
  28. F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
    [Crossref] [PubMed]
  29. M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
    [Crossref]
  30. M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
    [Crossref]
  31. D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
    [Crossref] [PubMed]
  32. D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
    [Crossref] [PubMed]
  33. A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
    [Crossref]
  34. S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64(11), 3088–3093 (1993).
    [Crossref]
  35. F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82(5), 541–552 (1982).
    [Crossref]
  36. A. A. Lamola and J. Eisinger, “Excited states of nucleotides in water at room temperature,” Biochim. Biophys. Acta 240(3), 313–325 (1971).
    [Crossref]
  37. M. D. Topal and J. R. Fresco, “Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids,” Biochemistry 19(24), 5531–5537 (1980).
    [Crossref] [PubMed]
  38. M. S. Kayne and M. Cohn, “Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA,” Biochemistry 13(20), 4159–4165 (1974).
    [Crossref] [PubMed]
  39. Z. Balcarová and V. Brabec, “Reinterpretation of fluorescence of terbium ion-DNA complexes,” Biophys. Chem. 33(1), 55–61 (1989).
    [Crossref] [PubMed]
  40. J. Eisinger and A. A. Lamola, “Europium ions as probes for excited molecules in aqueous solution,” Biochim. Biophys. Acta 240(3), 299–312 (1971).
    [Crossref]
  41. W. D. Horrocks and W. E. Collier, “Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium (III) in the calcium-binding protein parvalbumin,” J. Am. Chem. Soc. 103(10), 2856–2862 (1981).
    [Crossref]
  42. H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
    [Crossref]
  43. Cl- was also added to the cells when Tb3+, Eu3+, or Tm3+ was added, but the amount of added Cl- was only 2% of the total Cl- existing in the buffer solution.
  44. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
    [Crossref] [PubMed]
  45. Z. Q. Wen and G. J. Thomas., “UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm,” Biopolymers 45(3), 247–256 (1998).
    [Crossref] [PubMed]
  46. R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
    [Crossref]
  47. D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine,” J. Am. Chem. Soc. 97(10), 2599–2606 (1975).
    [Crossref] [PubMed]
  48. D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine,” J. Am. Chem. Soc. 97(10), 2606–2612 (1975).
    [Crossref] [PubMed]
  49. D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan,” J. Am. Chem. Soc. 97(10), 2612–2619 (1975).
    [Crossref] [PubMed]
  50. J. R. Lakowicz, “Energy transfer to multiple acceptors in one, two, or three dimensions,” in Principles of Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Springer, 2006).
  51. Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
    [Crossref] [PubMed]

2015 (1)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

2014 (2)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
[Crossref] [PubMed]

2013 (2)

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
[Crossref] [PubMed]

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

2011 (3)

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep UV resonant Raman spectroscopy for photodamage characterization in cells,” Biomed. Opt. Express 2(4), 927–936 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

2008 (2)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

2007 (2)

S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
[Crossref] [PubMed]

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

2006 (3)

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

2005 (1)

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

2003 (1)

Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
[Crossref]

2001 (1)

J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001).
[Crossref] [PubMed]

2000 (1)

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

1999 (1)

R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
[Crossref]

1998 (2)

Z. Q. Wen and G. J. Thomas., “UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm,” Biopolymers 45(3), 247–256 (1998).
[Crossref] [PubMed]

Z. Chi and S. A. Asher, “UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin,” Biochemistry 37(9), 2865–2872 (1998).
[Crossref] [PubMed]

1996 (1)

K. Lao and A. N. Glazer, “Ultraviolet-B photodestruction of a light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5258–5263 (1996).
[Crossref] [PubMed]

1994 (1)

H. Görner, “Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization,” J. Photochem. Photobiol. B 26(2), 117–139 (1994).
[PubMed]

1993 (1)

S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64(11), 3088–3093 (1993).
[Crossref]

1992 (2)

D. N. Nikogosyan and H. Görner, “Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light,” J. Photochem. Photobiol. B 13(3-4), 219–234 (1992).
[Crossref]

K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
[Crossref]

1989 (2)

S. Song and S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(L-lysine), poly(L-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111(12), 4295–4305 (1989).
[Crossref]

Z. Balcarová and V. Brabec, “Reinterpretation of fluorescence of terbium ion-DNA complexes,” Biophys. Chem. 33(1), 55–61 (1989).
[Crossref] [PubMed]

1986 (1)

C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986).
[Crossref]

1985 (1)

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

1982 (1)

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82(5), 541–552 (1982).
[Crossref]

1981 (1)

W. D. Horrocks and W. E. Collier, “Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium (III) in the calcium-binding protein parvalbumin,” J. Am. Chem. Soc. 103(10), 2856–2862 (1981).
[Crossref]

1980 (1)

M. D. Topal and J. R. Fresco, “Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids,” Biochemistry 19(24), 5531–5537 (1980).
[Crossref] [PubMed]

1975 (3)

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine,” J. Am. Chem. Soc. 97(10), 2599–2606 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine,” J. Am. Chem. Soc. 97(10), 2606–2612 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan,” J. Am. Chem. Soc. 97(10), 2612–2619 (1975).
[Crossref] [PubMed]

1974 (1)

M. S. Kayne and M. Cohn, “Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA,” Biochemistry 13(20), 4159–4165 (1974).
[Crossref] [PubMed]

1971 (2)

J. Eisinger and A. A. Lamola, “Europium ions as probes for excited molecules in aqueous solution,” Biochim. Biophys. Acta 240(3), 299–312 (1971).
[Crossref]

A. A. Lamola and J. Eisinger, “Excited states of nucleotides in water at room temperature,” Biochim. Biophys. Acta 240(3), 313–325 (1971).
[Crossref]

Allouche, F.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

Araki, T.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Arce, R.

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

Asher, S. A.

Z. Chi and S. A. Asher, “UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin,” Biochemistry 37(9), 2865–2872 (1998).
[Crossref] [PubMed]

S. Song and S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(L-lysine), poly(L-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111(12), 4295–4305 (1989).
[Crossref]

C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986).
[Crossref]

Ashida, M.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Balakrishnan, G.

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
[Crossref]

Balcarová, Z.

Z. Balcarová and V. Brabec, “Reinterpretation of fluorescence of terbium ion-DNA complexes,” Biophys. Chem. 33(1), 55–61 (1989).
[Crossref] [PubMed]

Banerjee, B.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Baum, M.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Benaitreau, D.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Benhamou, C. L.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Bent, D. V.

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine,” J. Am. Chem. Soc. 97(10), 2599–2606 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine,” J. Am. Chem. Soc. 97(10), 2606–2612 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan,” J. Am. Chem. Soc. 97(10), 2612–2619 (1975).
[Crossref] [PubMed]

Bisby, R. H.

R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
[Crossref]

Blades, M. W.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Blanchard, S. C.

Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
[Crossref] [PubMed]

Bockmeyer, C. L.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Brabec, V.

Z. Balcarová and V. Brabec, “Reinterpretation of fluorescence of terbium ion-DNA complexes,” Biophys. Chem. 33(1), 55–61 (1989).
[Crossref] [PubMed]

Cadet, J.

J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001).
[Crossref] [PubMed]

Chadha, S.

S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64(11), 3088–3093 (1993).
[Crossref]

Chappard, C.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Chen, R.

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

Cheung, M. C.

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
[Crossref] [PubMed]

Chi, Z.

Z. Chi and S. A. Asher, “UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin,” Biochemistry 37(9), 2865–2872 (1998).
[Crossref] [PubMed]

Claus, R. A.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Cohn, M.

M. S. Kayne and M. Cohn, “Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA,” Biochemistry 13(20), 4159–4165 (1974).
[Crossref] [PubMed]

Collier, W. E.

W. D. Horrocks and W. E. Collier, “Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium (III) in the calcium-binding protein parvalbumin,” J. Am. Chem. Soc. 103(10), 2856–2862 (1981).
[Crossref]

Crespo-Hernández, C. E.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

de La Harpe, K.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

Deigner, H.-P.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Depeursinge, C.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Douki, T.

J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001).
[Crossref] [PubMed]

Ehrlich, D. J.

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
[Crossref] [PubMed]

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Eisinger, J.

A. A. Lamola and J. Eisinger, “Excited states of nucleotides in water at room temperature,” Biochim. Biophys. Acta 240(3), 313–325 (1971).
[Crossref]

J. Eisinger and A. A. Lamola, “Europium ions as probes for excited molecules in aqueous solution,” Biochim. Biophys. Acta 240(3), 299–312 (1971).
[Crossref]

El-Mashtoly, S. F.

S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
[Crossref] [PubMed]

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Evans, J. G.

M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
[Crossref] [PubMed]

Feng, Z.

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

Flores, S.

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

Fodor, S. P. A.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Fresco, J. R.

M. D. Topal and J. R. Fresco, “Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids,” Biochemistry 19(24), 5531–5537 (1980).
[Crossref] [PubMed]

Furukawa, T.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Gavini, H.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Georg Schulze, H.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Glazer, A. N.

K. Lao and A. N. Glazer, “Ultraviolet-B photodestruction of a light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5258–5263 (1996).
[Crossref] [PubMed]

Gorman, A. A.

R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
[Crossref]

Görner, H.

H. Görner, “Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization,” J. Photochem. Photobiol. B 26(2), 117–139 (1994).
[PubMed]

D. N. Nikogosyan and H. Görner, “Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light,” J. Photochem. Photobiol. B 13(3-4), 219–234 (1992).
[Crossref]

Graves, L. R.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Hamblett, I.

R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
[Crossref]

Harz, M.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Hashimoto, M.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Haynes, C. A.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Hayon, E.

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan,” J. Am. Chem. Soc. 97(10), 2612–2619 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine,” J. Am. Chem. Soc. 97(10), 2606–2612 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine,” J. Am. Chem. Soc. 97(10), 2599–2606 (1975).
[Crossref] [PubMed]

Hays, T. R.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Horodincu, V.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Horrocks, W. D.

W. D. Horrocks and W. E. Collier, “Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium (III) in the calcium-binding protein parvalbumin,” J. Am. Chem. Soc. 103(10), 2856–2862 (1981).
[Crossref]

Hughesman, C. H.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Ibrahim, M.

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

Ichimiya, M.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Inami, W.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Jaffre, C.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Jamme, F.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Jia, G.

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

Jirasek, A.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Jockusch, S.

Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
[Crossref] [PubMed]

Johnson, C. R.

C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986).
[Crossref]

Jordan, C. D.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Kascakova, S.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

Kawata, S.

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep UV resonant Raman spectroscopy for photodamage characterization in cells,” Biomed. Opt. Express 2(4), 927–936 (2011).
[Crossref] [PubMed]

Kawata, Y.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Kayne, M. S.

M. S. Kayne and M. Cohn, “Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA,” Biochemistry 13(20), 4159–4165 (1974).
[Crossref] [PubMed]

Kentouche, K.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Kikawada, M.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Kitagawa, T.

S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
[Crossref] [PubMed]

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

Kohler, B.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Kumamoto, Y.

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep UV resonant Raman spectroscopy for photodamage characterization in cells,” Biomed. Opt. Express 2(4), 927–936 (2011).
[Crossref] [PubMed]

LaCroix, R.

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

Lamola, A. A.

J. Eisinger and A. A. Lamola, “Europium ions as probes for excited molecules in aqueous solution,” Biochim. Biophys. Acta 240(3), 299–312 (1971).
[Crossref]

A. A. Lamola and J. Eisinger, “Excited states of nucleotides in water at room temperature,” Biochim. Biophys. Acta 240(3), 313–325 (1971).
[Crossref]

Lao, K.

K. Lao and A. N. Glazer, “Ultraviolet-B photodestruction of a light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5258–5263 (1996).
[Crossref] [PubMed]

Law, Y. K.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

Lespessailles, E.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Li, C.

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

Liu, L.

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

Louise Creagh, A.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Ludwig, M.

C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986).
[Crossref]

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Maslov, K.

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[Crossref] [PubMed]

Matsudaira, P.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Maurel, D. B.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

McKenna, B.

M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
[Crossref] [PubMed]

McKenna, B. K.

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

Middleton, C. T.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

Mizutani, Y.

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

Morgan, C. G.

R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
[Crossref]

Nagai, M.

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

Nagatomo, S.

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

Negrón-Encarnación, I.

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

Nelson, W. H.

S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64(11), 3088–3093 (1993).
[Crossref]

Nfonsam, V.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Niioka, H.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan and H. Görner, “Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light,” J. Photochem. Photobiol. B 13(3-4), 219–234 (1992).
[Crossref]

Ono, A.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Pallu, S.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Pevsner, A.

Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
[Crossref]

Popp, J.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Pugh, J.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Rava, R. P.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Ravanat, J.-L.

J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001).
[Crossref] [PubMed]

Refregiers, M.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Réfrégiers, M.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

Renkoski, T.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Rial, N. S.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Richardson, F. S.

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82(5), 541–552 (1982).
[Crossref]

Rochefort, G. Y.

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Rodgers, K. R.

K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
[Crossref]

Rösch, P.

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Rouam, V.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

Shimizu, T.

S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
[Crossref] [PubMed]

Shung, K. K.

Smith, N. I.

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep UV resonant Raman spectroscopy for photodamage characterization in cells,” Biomed. Opt. Express 2(4), 927–936 (2011).
[Crossref] [PubMed]

Soldatova, A. V.

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

Song, S.

S. Song and S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(L-lysine), poly(L-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111(12), 4295–4305 (1989).
[Crossref]

Sperry, J. F.

S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64(11), 3088–3093 (1993).
[Crossref]

Spiro, T. G.

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
[Crossref]

K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
[Crossref]

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Su, C.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
[Crossref]

Subramaniam, S.

K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
[Crossref]

Taguchi, A.

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep UV resonant Raman spectroscopy for photodamage characterization in cells,” Biomed. Opt. Express 2(4), 927–936 (2011).
[Crossref] [PubMed]

Takahashi, H.

S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
[Crossref] [PubMed]

Thomas, G. J.

Z. Q. Wen and G. J. Thomas., “UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm,” Biopolymers 45(3), 247–256 (1998).
[Crossref] [PubMed]

Timp, W.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Tiwari, P.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Topal, M. D.

M. D. Topal and J. R. Fresco, “Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids,” Biochemistry 19(24), 5531–5537 (1980).
[Crossref] [PubMed]

Torres, C.

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

Trapani, L.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Tsikitis, V. L.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Turner, R. F. B.

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Utzinger, U.

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

Villette, S.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

Waller, G.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Wang, L. V.

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[Crossref] [PubMed]

Weeks, C. L.

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

Wei, C.

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

Wen, Z. Q.

Z. Q. Wen and G. J. Thomas., “UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm,” Biopolymers 45(3), 247–256 (1998).
[Crossref] [PubMed]

Winkelman, J.

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

Wu, Q.

Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
[Crossref]

Yao, D.-K.

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[Crossref] [PubMed]

Yonetani, T.

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

Yuan, J.

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

Zeskind, B. J.

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Zheng, Q.

Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
[Crossref] [PubMed]

Zhou, Q.

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[Crossref] [PubMed]

Zhou, Z.

Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60(1), 217–239 (2009).
[Crossref] [PubMed]

Appl. Phys. Express (2)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Appl. Phys. Lett. (1)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Biochemistry (4)

M. D. Topal and J. R. Fresco, “Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids,” Biochemistry 19(24), 5531–5537 (1980).
[Crossref] [PubMed]

M. S. Kayne and M. Cohn, “Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA,” Biochemistry 13(20), 4159–4165 (1974).
[Crossref] [PubMed]

C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry 45(21), 6681–6691 (2006).
[Crossref] [PubMed]

Z. Chi and S. A. Asher, “UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin,” Biochemistry 37(9), 2865–2872 (1998).
[Crossref] [PubMed]

Biochim. Biophys. Acta (2)

J. Eisinger and A. A. Lamola, “Europium ions as probes for excited molecules in aqueous solution,” Biochim. Biophys. Acta 240(3), 299–312 (1971).
[Crossref]

A. A. Lamola and J. Eisinger, “Excited states of nucleotides in water at room temperature,” Biochim. Biophys. Acta 240(3), 313–325 (1971).
[Crossref]

Biol. Cell (1)

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. Chem. (1)

Z. Balcarová and V. Brabec, “Reinterpretation of fluorescence of terbium ion-DNA complexes,” Biophys. Chem. 33(1), 55–61 (1989).
[Crossref] [PubMed]

Biophys. J. (1)

S. Nagatomo, M. Nagai, Y. Mizutani, T. Yonetani, and T. Kitagawa, “Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation,” Biophys. J. 89(2), 1203–1213 (2005).
[Crossref] [PubMed]

Biopolymers (2)

M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006).
[Crossref] [PubMed]

Z. Q. Wen and G. J. Thomas., “UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm,” Biopolymers 45(3), 247–256 (1998).
[Crossref] [PubMed]

Chem. Rev. (1)

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82(5), 541–552 (1982).
[Crossref]

Curr. Opin. Struct. Biol. (1)

G. Balakrishnan, C. L. Weeks, M. Ibrahim, A. V. Soldatova, and T. G. Spiro, “Protein dynamics from time resolved UV Raman spectroscopy,” Curr. Opin. Struct. Biol. 18(5), 623–629 (2008).
[Crossref] [PubMed]

Cytometry A (3)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

M. C. Cheung, J. G. Evans, B. McKenna, and D. J. Ehrlich, “Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel,” Cytometry A 79(11), 920–932 (2011).
[Crossref] [PubMed]

M. C. Cheung, R. LaCroix, B. K. McKenna, L. Liu, J. Winkelman, and D. J. Ehrlich, “Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping,” Cytometry A 83(6), 540–551 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (9)

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine,” J. Am. Chem. Soc. 97(10), 2599–2606 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine,” J. Am. Chem. Soc. 97(10), 2606–2612 (1975).
[Crossref] [PubMed]

D. V. Bent and E. Hayon, “Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan,” J. Am. Chem. Soc. 97(10), 2612–2619 (1975).
[Crossref] [PubMed]

W. D. Horrocks and W. E. Collier, “Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium (III) in the calcium-binding protein parvalbumin,” J. Am. Chem. Soc. 103(10), 2856–2862 (1981).
[Crossref]

S. F. El-Mashtoly, H. Takahashi, T. Shimizu, and T. Kitagawa, “Ultraviolet resonance Raman evidence for utilization of the heme 6-propionate hydrogen-bond network in signal transmission from heme to protein in Ec DOS protein,” J. Am. Chem. Soc. 129(12), 3556–3563 (2007).
[Crossref] [PubMed]

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986).
[Crossref]

S. Song and S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(L-lysine), poly(L-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111(12), 4295–4305 (1989).
[Crossref]

K. R. Rodgers, C. Su, S. Subramaniam, and T. G. Spiro, “Hemoglobin R→T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals,” J. Am. Chem. Soc. 114(10), 3697–3709 (1992).
[Crossref]

J. Biomed. Opt. (3)

D.-K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, N. I. Smith, and S. Kawata, “Deep ultraviolet resonant Raman imaging of a cell,” J. Biomed. Opt. 17(7), 076001 (2012).
[Crossref] [PubMed]

B. Banerjee, T. Renkoski, L. R. Graves, N. S. Rial, V. L. Tsikitis, V. Nfonsam, J. Pugh, P. Tiwari, H. Gavini, and U. Utzinger, “Tryptophan autofluorescence imaging of neoplasms of the human colon,” J. Biomed. Opt. 17(1), 016003 (2012).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (3)

J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001).
[Crossref] [PubMed]

D. N. Nikogosyan and H. Görner, “Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light,” J. Photochem. Photobiol. B 13(3-4), 219–234 (1992).
[Crossref]

H. Görner, “Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization,” J. Photochem. Photobiol. B 26(2), 117–139 (1994).
[PubMed]

J. Phys. Chem. A (2)

Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003).
[Crossref]

R. H. Bisby, C. G. Morgan, I. Hamblett, and A. A. Gorman, “Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature,” J. Phys. Chem. A 103(37), 7454–7459 (1999).
[Crossref]

J. Raman Spectrosc. (1)

A. Jirasek, H. Georg Schulze, C. H. Hughesman, A. Louise Creagh, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy,” J. Raman Spectrosc. 37(12), 1368–1380 (2006).
[Crossref]

Nat. Methods (1)

B. J. Zeskind, C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira, “Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy,” Nat. Methods 4(7), 567–569 (2007).
[Crossref] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (2)

Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, “The contribution of reactive oxygen species to the photobleaching of organic fluorophores,” Photochem. Photobiol. 90(2), 448–454 (2014).
[Crossref] [PubMed]

C. E. Crespo-Hernández, S. Flores, C. Torres, I. Negrón-Encarnación, and R. Arce, “Photochemical and photophysical studies of guanine derivatives: intermediates contributing to its photodestruction mechanism in aqueous solution and the participation of the electron adduct,” Photochem. Photobiol. 71(5), 534–543 (2000).
[Crossref] [PubMed]

PLoS One (1)

S. Pallu, G. Y. Rochefort, C. Jaffre, M. Refregiers, D. B. Maurel, D. Benaitreau, E. Lespessailles, F. Jamme, C. Chappard, and C. L. Benhamou, “Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment,” PLoS One 7(8), e43930 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Lao and A. N. Glazer, “Ultraviolet-B photodestruction of a light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5258–5263 (1996).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64(11), 3088–3093 (1993).
[Crossref]

Other (5)

D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” in Cancer: Cell structures, carcinogens and genomic instability, L. P. Bignold, ed. (Birkhaeuser, 2006).

Commercially available from Shimadzu, Inc, JASCO, Inc, etc.

Commercially available from Nikkiso, Inc.

J. R. Lakowicz, “Energy transfer to multiple acceptors in one, two, or three dimensions,” in Principles of Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Springer, 2006).

Cl- was also added to the cells when Tb3+, Eu3+, or Tm3+ was added, but the amount of added Cl- was only 2% of the total Cl- existing in the buffer solution.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The addition of Ln ions protects cell morphology from DUV irradiation. (a-h) Bright-field images of the fixed HeLa cells (a-d) before and (e-h) after DUV exposure are shown. The cells shown in (a) and (e) were not treated with Ln ions, while the cells shown in (b) and (f), (e) and (g), and (d) and (h) were treated with Tb3+, Eu3+, and Tm3+, respectively. The scale bar is 15 µm. The dotted squares exhibit the DUV irradiation areas. (i) A histogram for the bright-field images from all data (n = 75) including n = 153 irradiated cells. The distribution of the differences in normalized, summed absolute image gradient between before and after DUV irradiation is shown.
Fig. 2
Fig. 2 Protecting effect of Ln ions measured by Raman scattering. (a) A typical DUV Raman spectrum obtained from the cell; A: adenine, G: guanine, Tyr: tyrosine, Trp: tryptophan. The asterisk indicates the Raman band used for reconstructing Raman intensity images. (b-e) Raman intensity images reconstructed by the nucleobases band of the cells treated with (b) Tb3+, (c) Eu3+, or (d) Tm3+, and (e) without Ln ion. The scale bar is 10 µm. (f) A histogram for the average Raman intensity in the nuclei for a number of the measured cells, with or without Tb3+, Eu3+, and Tm3+. The number of cells analyzed is 47, 36, 35, and 35, for no Ln ion, Tb3+ Eu3+, and Tm3+, respectively. (g) Concentration dependencies of the nuclei Raman intensity for Tb3+, Eu3+, and Tm3+. The plots, and the positive/negative error bars show the average Raman intensity and standard deviations of a number of cells. The upper, and lower horizontal dotted line represents the average Raman intensity plus, and minus standard deviation for no Ln ion, respectively. The number of analyzed cells is 10 for 1 µM Tb3+ and Eu3+, 11 for 1 µM Tm3+, 20 for 10 µM Tb3+ and Eu3+, 100 µM Tb3+, Eu3+, and Tm3+, and 10 mM Tb3+ and Eu3+, 21 for 10 µM and 10 mM Tm3+, 35 for 1 mM Eu3+ and Tm3+, 36 for 1 mM Tb3+, and 47 for no Ln ion, respectively.
Fig. 3
Fig. 3 DUV resonance Raman spectra of the (a) adenine and (b) guanine aqueous solutions. Arrows indicate the Raman bands assigned to adenine or guanine. In (a), Raman spectra of the 1 mM adenine aqueous solutions with and without Tb3+ or Eu3+ are shown together. In (b), Raman spectra of the saturated guanine aqueous solutions with and without Tb3+ or Eu3+ are shown together.
Fig. 4
Fig. 4 Repetitive measurements on fixed HeLa cells by DUV Raman imaging. (a-f) Raman intensity images repeatedly measured from identical cells treated (a-c) without Ln ion and (d-f) with Tb3+. (a) and (d) were measured at first, and (c) and (f) were measured at the end. The exposure duration for acquiring a single-point spectrum was 100 ms. (g-j) Bright-field images of the cells measured (g and i) before the 1st Raman imaging, and (h and j) after the 3rd Raman imaging. The cells shown in (i) and (j) were treated with Tb3+, while the cells in (g) and (h) were not. The dotted squares depict the DUV irradiation areas. The scale bars are 15 µm. (k,l) Average Raman spectra obtained for each imaging acquisition from the cell nucleoplasm region discriminated by the yellow solid square in (a), and (d) are shown in (k), and (l), respectively. The asterisks indicate the observable Raman bands of nucleobases or aromatic amino acids. Red, blue, and green spectra represent the results of 1st, 2nd, and 3rd imaging acquisition, respectively. The presented spectra were processed for display; the bias was removed first by subtracting the average intensity of noise obtained from region outside the cells, and then the spectra in (k) and (l) were normalized by the peak intensity of the 1480 cm−1 band of each “1st” spectrum.
Fig. 5
Fig. 5 Energy pathways of nucleobases and aromatic amino acids in a cell under DUV (λ = 257 nm) exposure. Regardless of the type of Ln ion, nucleobases or aromatic amino acids are excited by absorbing DUV light, then is immediately relaxed to the vibrational ground state of the electronic excited state having the lowest energy. (a) Without Ln ion, the excitation of nucleobase or aromatic amino acid is followed by ionization, reaction with molecules, and relaxation to the electronic ground state. The relaxation pathways are thermal and radiative decays or energy transfer to surrounding molecules. The energy transfer to surrounding molecule is followed by ROS generation, ionization, reaction with molecules, and thermal decay. (b) With Ln ion, FRET from the excited nucleobase and aromatic amino acid to the higher energy level of Ln ion can occur. Ln ion is relaxed to the lower excited energy states by heat emission and further relaxed by thermal or radiative decays.
Fig. 6
Fig. 6 (a) DUV-excited luminescence of nuclei of cells treated with Tb3+, Eu3+, or Tm3+. (b-d) Luminescence intensity distribution of cells treated with (b) Tb3+, (c) Eu3+, and (d) Tm3+. (b) was reconstructed by the luminescence band at λ = 545 nm, while (c), and (d) were reconstructed at λ = 590, and 455 nm, where Eu3+, and Tm3+, when excited with proper wavelengths, should have an emission line, respectively35,42. The scale bar is 10 µm. The arrow indicates the second-order diffraction light of the laser line (λ = 257 nm), at λ = 514 nm.
Fig. 7
Fig. 7 Ln ion molecular protection under (a-c) the standard ambient and (d-f) the low-O2 conditions. The cells treated with (a) Tb3+, (b) Eu3+, and (c) Tm3+, in the standard ambient condition, exhibit weaker Raman signals compared to the cells treated with (d) Tb3+, (e) Eu3+, and (f) Tm3+, in the low-O2 condition, respectively. The scale bar is 10 µm. The exposure duration for a single Raman spectrum acquisition was 500 ms. O2 in the sample environment was removed by using the Ar purge process. For the Ar purge process, a glove box chamber was used. After the fixed and permeabilized cells were put inside the chamber, the O2 level inside the chamber was decreased by Ar input and air output. The chamber was then sealed and left for 20 min while keeping the O2 level lower than 2.0%. Finally, the cells were sealed. Ar gas was purchased from Awao-Sangyo.

Tables (1)

Tables Icon

Table 1 Averages and standard deviations of the nuclei Raman intensity of cells treated with Tb3+, Eu3+, and Tm3+ under the standard ambient and the low-O2 conditions.

Metrics