Abstract

Assessing the degree of heating present when a metal nanoparticle is trapped in an optical tweezers is critical for its appropriate use in biological applications as a nanoscale force sensor. Heating is necessarily present for trapped plasmonic particles because of the non-negligible extinction which contributes to an enhanced polarisability. We present a robust method for characterising the degree of heating of trapped metallic nanoparticles, using the intrinsic temperature dependence of the localised surface plasmon resonance (LSPR) to infer the temperature of the surrounding fluid at different incident laser powers. These particle specific measurements can be used to infer the rate of heating and local temperature of trapped nanoparticles. Our measurements suggest a considerable amount of a variability in the degree of heating, on the range of 414–673 K/W, for different 100 nm diameter Au nanoparticles, and we associated this with variations in the axial trapping position.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark-field optical tweezers for nanometrology of metallic nanoparticles

Kellie Pearce, Fan Wang, and Peter J. Reece
Opt. Express 19(25) 25559-25569 (2011)

Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.

Rosalba Saija, Paolo Denti, Ferdinando Borghese, Onofrio M. Maragò, and Maria Antonia Iatì
Opt. Express 17(12) 10231-10241 (2009)

Plasmon resonance-based optical trapping of single and multiple Au nanoparticles

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer
Opt. Express 15(19) 12017-12029 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and S. M. Block, “Optical trapping of metallic rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  3. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett.,  25(15), 1065–1067 (2000).
    [Crossref]
  4. O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  5. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  6. R. Saija, P. Denti, F. Borghese, O. M. Marago, and M. A. Iati, “Optical trapping calculations for metal nanoparticles. comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
    [Crossref] [PubMed]
  7. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
    [Crossref] [PubMed]
  8. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
    [Crossref] [PubMed]
  9. A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
    [Crossref] [PubMed]
  10. P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
    [Crossref] [PubMed]
  11. A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
    [Crossref]
  12. K. Pearce, F. Wang, and P. J. Reece, “Dark-field optical tweezers for nanometrology of metallic nanoparticles,” Opt. Express 19(25), 25559–25569 (2011).
    [Crossref]
  13. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  14. M. Honda, Y. Saito, N. I. Smith, K. Fujita, and S. Kawata, “Nanoscale heating of laser irradiated single gold nanoparticles in liquid,” Opt. Express 19(13), 12375–12383 (2011).
    [Crossref] [PubMed]
  15. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer: Berlin, 1995).
    [Crossref]
  16. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
    [Crossref]
  17. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: A simple approximation,” in Saratov Fall Meeting 2002 Optical Technologies in Biophysics and Medicine IV, 5068, 393–395 (2002).
  18. Marvin J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  19. M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
    [Crossref]
  20. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
    [Crossref]
  21. M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
    [Crossref] [PubMed]
  22. T. Read, R. V. Olkhov, and A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
    [Crossref] [PubMed]
  23. S. M. Block, Modern Cell Biology, (Wiley-Liss: New York, 1990).
  24. V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [Crossref] [PubMed]
  25. O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
    [Crossref] [PubMed]
  26. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
    [Crossref]
  27. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25(15), 1065–1067 (2000).
    [Crossref]
  28. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
    [Crossref] [PubMed]

2015 (2)

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

2013 (2)

T. Read, R. V. Olkhov, and A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[Crossref] [PubMed]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

2012 (2)

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
[Crossref] [PubMed]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (3)

Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
[Crossref] [PubMed]

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

2004 (1)

2000 (2)

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1995 (1)

1994 (1)

1986 (1)

Ashkin, A.

Bargheer, M.

M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: A simple approximation,” in Saratov Fall Meeting 2002 Optical Technologies in Biophysics and Medicine IV, 5068, 393–395 (2002).

Bendix, P. M.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[Crossref]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

Bodapati, A.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

Booker, G. R.

Borghese, F.

Brzobohaty, O.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Cahill, D. G.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

Carpenter, A. E.

Chaumet, P. C.

Chu, S.

Chvatal, L.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Dahmen, C.

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Denti, P.

Dienerowitz, F.

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

Dienerowitz, M.

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

Dziedzic, J. M.

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Ferrari, A. C.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Fujita, K.

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: A simple approximation,” in Saratov Fall Meeting 2002 Optical Technologies in Biophysics and Medicine IV, 5068, 393–395 (2002).

Gibson, G.

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

Gucciardi, P. G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Hajizadeh, F.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Honda, M.

Iati, M. A.

Johansson, P.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Jones, P. H.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Kall, M.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Karasek, V.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Kawata, S.

Keblinski, P.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

Kiel, M.

M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
[Crossref] [PubMed]

Klotzer, M.

M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
[Crossref] [PubMed]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer: Berlin, 1995).
[Crossref]

Kyrsting, A.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[Crossref]

Laczik, Z.

Lehmuskero, A.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Marago, O. M.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

R. Saija, P. Denti, F. Borghese, O. M. Marago, and M. A. Iati, “Optical trapping calculations for metal nanoparticles. comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
[Crossref] [PubMed]

Mika, F.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Mitzscherling, S.

M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Nugent-Glandorf, L.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[Crossref]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Olkhov, R. V.

T. Read, R. V. Olkhov, and A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[Crossref] [PubMed]

Padgett, M.

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

Patak, A.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Pearce, K.

Perkins, T. T.

Plech, A.

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Pokorna, Z.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Read, T.

T. Read, R. V. Olkhov, and A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[Crossref] [PubMed]

Reece, P. J.

Reihani, S. N. S.

F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
[Crossref] [PubMed]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Saija, R.

Saito, Y.

Seol, Y.

Shaw, A. M.

T. Read, R. V. Olkhov, and A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[Crossref] [PubMed]

Siler, M.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Smith, N. I.

Springer, F.

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Stamou, D. G.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[Crossref]

Sullivan, C. R.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

Svoboda, K.

Taton, T. A.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

Tong, L.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Török, P.

Trojek, J.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Varga, P.

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer: Berlin, 1995).
[Crossref]

Volpe, G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Von Plessen, G.

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Wang, F.

Weber, Marvin J.

Marvin J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Zemanek, P.

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

ACS Nano (2)

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Kall, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

J. App. Phys. (1)

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. App. Phys. 100(5), 054305 (2006).
[Crossref]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

J. Opt. (1)

M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, M. Dienerowitz, G. Gibson, F. Dienerowitz, and M. Padgett, “Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers,” J. Opt. 14(4), 045003 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Langmuir (1)

M. Kiel, M. Klotzer, S. Mitzscherling, and M. Bargheer, “Measuring the range of plasmonic interaction,” Langmuir 28(10), 4800–4804 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[Crossref]

Nat. Nanotechnol. (1)

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (1)

T. Read, R. V. Olkhov, and A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

O. Brzobohaty, M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, Z. Pokorna, F. Mika, and P. Zemanek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Other (5)

S. M. Block, Modern Cell Biology, (Wiley-Liss: New York, 1990).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer: Berlin, 1995).
[Crossref]

S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
[Crossref]

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: A simple approximation,” in Saratov Fall Meeting 2002 Optical Technologies in Biophysics and Medicine IV, 5068, 393–395 (2002).

Marvin J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical tweezers setup that incorporates dark-field microscopy / spectroscopy. The illuminating light is formed into a ring by using an axicon. The image of this ring is projected onto the sample; its reflection is blocked from entering CCD1 by using an aperture, allowing only the scattered light to pass.

Fig. 2
Fig. 2

(a) Simulated scattering spectra of a single 100 nm Au nanoparticle for different temperatures of the surrounding medium, i.e. water, using full Mie theory. (b) Experimentally measured spectra of a single 100 nm Au nanoparticle trapped in an optical tweezers for varying power of the IR trapping laser.

Fig. 3
Fig. 3

Experimentally measured trapping laser power and integrated scattering intensity (550–750 nm) of the trapped nanoparticle over time shows that the heating of the trapped nanoparticle is a reversible process.

Fig. 4
Fig. 4

(a) Normalised integrated scattering intensity vs. power at the focus of the trapping laser for several 100 nm Au nanoparticles. The non-linear least squares fitting of the experimental data points to the simulated curves yield heatings of 414 ± 20 K/W (▵), 480 ± 24 K/W (○), 558 ± 14 K/W (▿), and 673 ± 19 K/W (□). (b) Local temperature immediately adjacent of the nanoparticle for different trapping powers.

Fig. 5
Fig. 5

Beam intensity distribution of the 1064 nm trapping laser at the focus on the z-axis (solid line). The stable trapping positions for Au nanoparticles of different sizes are labeled on this line (coloured spheres). The 1/e2 height of the peak intensity is shown as a green dotted line.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ ext = 9 V ε m ( T ) 3 / 2 c ω ε 2 ( ω ) [ ε 1 ( ω ) + 2 ε m ( T ) ] 2 + ε 2 ( ω 2 ) 2 ,
T = T 0 + H P
I Int , Exp ( P ) = λ i λ f I Exp ( λ , P ) d λ
I Int , Mie ( T ) = λ i λ f I Mie ( λ , T ) d λ
I Int , Exp ( P ) = I Int , Mie ( T ) = I Int , Mie ( T 0 + H P )

Metrics