Abstract

Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes

Agathe Puszka, Laura Di Sieno, Alberto Dalla Mora, Antonio Pifferi, Davide Contini, Gianluca Boso, Alberto Tosi, Lionel Hervé, Anne Planat-Chrétien, Anne Koenig, and Jean-Marc Dinten
Biomed. Opt. Express 4(8) 1351-1365 (2013)

Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements

Alberto Tosi, Alberto Dalla Mora, Franco Zappa, Angelo Gulinatti, Davide Contini, Antonio Pifferi, Lorenzo Spinelli, Alessandro Torricelli, and Rinaldo Cubeddu
Opt. Express 19(11) 10735-10746 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
    [Crossref] [PubMed]
  2. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
    [Crossref] [PubMed]
  3. X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
    [Crossref] [PubMed]
  4. S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13(7), 2564–2577 (2005).
    [Crossref] [PubMed]
  5. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
    [Crossref] [PubMed]
  6. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
    [Crossref] [PubMed]
  7. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
    [Crossref] [PubMed]
  8. K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
    [PubMed]
  9. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
    [Crossref] [PubMed]
  10. F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
    [Crossref] [PubMed]
  11. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  12. B. Das, F. Liu, and R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60(2), 227–292 (1997).
    [Crossref]
  13. D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29(19), 2258–2260 (2004).
    [Crossref] [PubMed]
  14. S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
    [Crossref] [PubMed]
  15. A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14(25), 12255–12270 (2006).
    [Crossref] [PubMed]
  16. A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008).
    [Crossref] [PubMed]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  18. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
    [Crossref] [PubMed]
  19. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
    [Crossref] [PubMed]
  20. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).
    [Crossref] [PubMed]
  21. M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010).
    [Crossref] [PubMed]
  22. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
    [Crossref] [PubMed]
  23. G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34(4), 1405–1411 (2007).
    [Crossref] [PubMed]
  24. L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “L p regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
    [Crossref] [PubMed]
  25. N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58(2), 335–349 (2013).
    [Crossref] [PubMed]
  26. Y. Mu, N. Valim, and M. Niedre, “Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media,” Opt. Lett. 38(12), 2098–2100 (2013).
    [Crossref] [PubMed]
  27. A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express 4(8), 1351–1365 (2013).
    [Crossref] [PubMed]
  28. M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. D. Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
    [Crossref] [PubMed]
  29. Y. Mu and M. Niedre, “A fast SPAD-based small animal imager for early-photon diffuse optical tomography,” in Engineering in Medicine and Biology Society (EMBC),201436th Annual International Conference of the IEEE(IEEE, 2014), pp. 2833–2836.
  30. M. J. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).
  31. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
    [Crossref] [PubMed]
  32. L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).
  33. J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
    [Crossref] [PubMed]
  34. N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
    [Crossref] [PubMed]
  35. C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt. 6(9), 844–852 (2004).
    [Crossref]
  36. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
    [Crossref] [PubMed]
  37. K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
    [Crossref] [PubMed]
  38. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
    [Crossref] [PubMed]
  39. Z. Li and M. Niedre, “Hybrid use of early and quasi-continuous wave photons in time-domain tomographic imaging for improved resolution and quantitative accuracy,” Biomed. Opt. Express 2(3), 665–679 (2011).
    [Crossref] [PubMed]
  40. S. S. Hou, W. L. Rice, B. J. Bacskai, and A. T. Kumar, “Tomographic lifetime imaging using combined early- and late-arriving photons,” Opt. Lett. 39(5), 1165–1168 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (1)

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

2011 (4)

2010 (3)

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[Crossref] [PubMed]

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008).
[Crossref] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

2007 (3)

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34(4), 1405–1411 (2007).
[Crossref] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

2006 (2)

M. J. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14(25), 12255–12270 (2006).
[Crossref] [PubMed]

2005 (2)

S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13(7), 2564–2577 (2005).
[Crossref] [PubMed]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
[Crossref] [PubMed]

2004 (4)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[Crossref] [PubMed]

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt. 6(9), 844–852 (2004).
[Crossref]

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29(19), 2258–2260 (2004).
[Crossref] [PubMed]

2003 (1)

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

2002 (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

2000 (2)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

1997 (2)

B. Das, F. Liu, and R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60(2), 227–292 (1997).
[Crossref]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
[Crossref] [PubMed]

1989 (1)

Achilefu, S.

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Alencar, H.

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

Alfano, R.

B. Das, F. Liu, and R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60(2), 227–292 (1997).
[Crossref]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Bacskai, B. J.

Bharatha, A.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Bloch, S.

Boas, D. A.

A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14(25), 12255–12270 (2006).
[Crossref] [PubMed]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Boso, G.

Boverman, G.

Bremer, C.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Brock, J.

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58(2), 335–349 (2013).
[Crossref] [PubMed]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[Crossref] [PubMed]

Brooks, D. H.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Cerussi, A. E.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

Chen, J.

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Cong, W.

Contini, D.

Cubeddu, R.

Culver, J.

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Dalla Mora, A.

Das, B.

B. Das, F. Liu, and R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60(2), 227–292 (1997).
[Crossref]

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
[Crossref] [PubMed]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Dehghani, H.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).
[Crossref] [PubMed]

Deliolanis, N.

Di Sieno, L.

DiMarzio, C. A.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Dinten, J.-M.

Dunn, A. K.

A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008).
[Crossref] [PubMed]

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

El-Ghussein, F.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
[Crossref] [PubMed]

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
[Crossref] [PubMed]

Figueiredo, J. L.

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

Gambhir, S. S.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
[Crossref] [PubMed]

Gaudette, R. J.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Gaudette, T.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Gheysens, O.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
[Crossref] [PubMed]

Gulinatti, A.

Gunn, J. R.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Haker, S. J.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Hall, D.

Hervé, L.

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Holt, R. W.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
[Crossref] [PubMed]

Hou, S. S.

Hyde, D.

Intes, X.

Jermyn, M.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Jiang, H.

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt. 6(9), 844–852 (2004).
[Crossref]

Jolesz, F. A.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Kaus, M. R.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Kepshire, D.

Keren, S.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
[Crossref] [PubMed]

Kikinis, R.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Kilmer, M. E.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Koenig, A.

Kumar, A. T.

Lasser, T.

Leblond, F.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
[Crossref] [PubMed]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).
[Crossref] [PubMed]

Leeser, M.

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58(2), 335–349 (2013).
[Crossref] [PubMed]

Lesage, F.

Levin, C. S.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
[Crossref] [PubMed]

Li, C.

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt. 6(9), 844–852 (2004).
[Crossref]

Li, Z.

Liu, F.

B. Das, F. Liu, and R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60(2), 227–292 (1997).
[Crossref]

Ma, G.

Macdonald, R.

Mahmood, U.

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

Mazurenka, M.

Miller, E. L.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Montet, X.

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

Mora, A. D.

Mu, Y.

Niedre, M.

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

M. J. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).

Ntziachristos, V.

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010).
[Crossref] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34(4), 1405–1411 (2007).
[Crossref] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

M. J. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
[Crossref] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[Crossref] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Patterson, M. S.

Patwardhan, S.

Paulsen, K. D.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
[Crossref] [PubMed]

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

Pifferi, A.

Planat-Chrétien, A.

Pogue, B. W.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
[Crossref] [PubMed]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Puszka, A.

Raymond, S. B.

A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008).
[Crossref] [PubMed]

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14(25), 12255–12270 (2006).
[Crossref] [PubMed]

Rice, W. L.

Ripoll, J.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
[Crossref] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[Crossref] [PubMed]

Samkoe, K. S.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[Crossref] [PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Soubret, A.

Spinelli, L.

Tempany, C. M. C.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Tichauer, K. M.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
[Crossref] [PubMed]

Torricelli, A.

Tosi, A.

Tromberg, B. J.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Turner, G. M.

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34(4), 1405–1411 (2007).
[Crossref] [PubMed]

M. J. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).

Valdés, P. A.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

Valim, N.

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58(2), 335–349 (2013).
[Crossref] [PubMed]

Y. Mu, N. Valim, and M. Niedre, “Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media,” Opt. Lett. 38(12), 2098–2100 (2013).
[Crossref] [PubMed]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[Crossref] [PubMed]

Venugopal, V.

Wabnitz, H.

Wang, G.

Wang, Y.

Warfield, S. K.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
[Crossref] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Wells, W. M.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Wilson, B. C.

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
[Crossref] [PubMed]

Yang, H.

Yodh, A. G.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Zacharakis, G.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
[Crossref] [PubMed]

Zappa, F.

Zhang, Q.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

Zhao, L.

Zou, K. H.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Acad. Radiol. (1)

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index,” Acad. Radiol. 11(2), 178–189 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (4)

IEEE Trans. Med. Imaging (4)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[Crossref] [PubMed]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24(7), 878–885 (2005).
[Crossref] [PubMed]

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continuous wave small animal optical imaging system,” IEEE Trans. Med. Imaging 27(1), 58–63 (2008).
[Crossref] [PubMed]

A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008).
[Crossref] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (3)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[Crossref] [PubMed]

M. J. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt. 6(9), 844–852 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. B (1)

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

J. Vis. Exp. (1)

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Med. Phys. (3)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34(4), 1405–1411 (2007).
[Crossref] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (7)

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36(19), 3723–3725 (2011).
[Crossref] [PubMed]

Y. Mu, N. Valim, and M. Niedre, “Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media,” Opt. Lett. 38(12), 2098–2100 (2013).
[Crossref] [PubMed]

S. S. Hou, W. L. Rice, B. J. Bacskai, and A. T. Kumar, “Tomographic lifetime imaging using combined early- and late-arriving photons,” Opt. Lett. 39(5), 1165–1168 (2014).
[Crossref] [PubMed]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “L p regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29(19), 2258–2260 (2004).
[Crossref] [PubMed]

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58(2), 335–349 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94(16), 8783–8788 (1997).
[Crossref] [PubMed]

Radiology (1)

X. Montet, J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242(3), 751–758 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

B. Das, F. Liu, and R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60(2), 227–292 (1997).
[Crossref]

Other (2)

Y. Mu and M. Niedre, “A fast SPAD-based small animal imager for early-photon diffuse optical tomography,” in Engineering in Medicine and Biology Society (EMBC),201436th Annual International Conference of the IEEE(IEEE, 2014), pp. 2833–2836.

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) schematic diagram and (b) photograph of the SPAD-based DOT imager. See text for details.
Fig. 2
Fig. 2 (a) diagram showing the distribution and number of holes for the cylindrical phantom, as well as (b) top and (c) side view of the phantom. (d) diagram, (e) top view, and (f) side view of the irregularly-shaped optical phantom.
Fig. 3
Fig. 3 (a) Example measured time-resolved normalized transmitted Photon density curve and time points used in calculating the EP1, EP2 and EP3 data types. (b) The overall measured system TIRF showing the rapid instrument response (c) Example measured time-resolved normalized transmitted photon density (log scale). Carrier processes in the semiconductor detector result in a “diffusion tail” (red arrow) which is independent from the light diffusion through scattering media. (d) The measured SNR for the different data types used in these analyses.
Fig. 4
Fig. 4 (a-c) Example 2, 3 and 4-absorber configurations for the cylindrical phantom. Normalized measured data are shown as a function of the rotation angle for EP1, EP2, EP3 and Quasi-CW data types is shown for (d-f) the detector at location D in the diagrams (0 degrees to the optical axis, and for (g-i) the detector at location D’ in the diagrams (45 degrees from the optical axis).
Fig. 5
Fig. 5 Reconstructed images of the example phantoms with 2, 3 and 4 embedded absorbing targets for: (a-c) quasi-CW data, (d-f) EP3 data, (g-i) EP2 data, and (j-l) EP1 data. (m) Dice similarity coefficient data for the 3 phantom configurations and 4 data types is also shown.
Fig. 6
Fig. 6 Reconstructed images for 2-target phantom with either 8:1 (a-d), 4:1 (e-h), or 2:1 (j-l) contrast for CW (a,e,i), EP3 (b,f,j), EP2 (c,g,k) and EP1 (d,h,l) data types. The intensity versus contrast is shown (m-p) normalized to the highest contrast case for, By inspection, the position or contrast of the targets could not be recovered for 2:1 contrast for EP1 and EP2 data types (dashed rectangle).
Fig. 7
Fig. 7 (a) The boundary reconstruction of the irregularly-shaped phantom shown in Figs. 3d-f. (b) The down-sampled mask of axial slice used in the reconstructed images. Reconstructions obtained with (c) quasi-CW data, (d) EP3 data, (e) EP2, and (f) EP1 data are shown. (g) DSC data for the 3 data types.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W( r s , r d )= U 0 (r, r s )G( r d ,r)d r 3
Φ(r)= 1 4πDr exp( μ a D r )
W( r s , r d ,t)= 0 t U 0 ( r , r s ,τ)G( r d ,r,tτ)dτd r 3
Φ(r,t)= c (4πDct) 3/2 exp( r 2 4Dct μ a ct )
DSC( A,B ) = 2 X ( AB )/ ( A+B )

Metrics