Abstract

Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

Yifan Jian, Jing Xu, Martin A. Gradowski, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 5(2) 547-559 (2014)

Improving high resolution retinal image quality using speckle illumination HiLo imaging

Xiaolin Zhou, Phillip Bedggood, and Andrew Metha
Biomed. Opt. Express 5(8) 2563-2579 (2014)

Sensorless adaptive optics multimodal en-face small animal retinal imaging

Daniel J. Wahl, Ringo Ng, Myeong Jin Ju, Yifan Jian, and Marinko V. Sarunic
Biomed. Opt. Express 10(1) 252-267 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  2. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
    [Crossref]
  3. J. W. Hardy, “Active optics - new technology for control of light,” Proc. IEEE 66(6), 651–697 (1978).
    [Crossref]
  4. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
    [Crossref] [PubMed]
  5. J. Porter, Adaptive optics for vision science: Principles, practices, design, and applications (Wiley-Interscience, Hoboken, NJ, 2006).
  6. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
    [Crossref] [PubMed]
  7. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
    [Crossref] [PubMed]
  8. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
    [Crossref] [PubMed]
  9. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: Optical coherence tomography,” Opt. Lett. 38(22), 4801–4804 (2013).
    [Crossref] [PubMed]
  10. Y. N. Sulai and A. Dubra, “Non-common path aberration correction in an adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 5(9), 3059–3073 (2014).
    [Crossref] [PubMed]
  11. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
    [Crossref] [PubMed]
  12. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
    [Crossref] [PubMed]
  13. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20(3), 2598–2612 (2012).
    [Crossref] [PubMed]
  14. X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination hilo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
    [Crossref] [PubMed]
  15. X. Zhou, P. Bedggood, and A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
    [Crossref] [PubMed]
  16. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
    [Crossref] [PubMed]
  17. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence hilo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
    [Crossref] [PubMed]
  18. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
    [Crossref] [PubMed]
  19. D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
    [Crossref] [PubMed]
  20. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
    [Crossref] [PubMed]
  21. P. Bedggood and A. Metha, “Optical imaging of human cone photoreceptors directly following the capture of light,” PLoS One 8(11), e79251 (2013).
    [Crossref] [PubMed]
  22. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
    [Crossref] [PubMed]
  23. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref] [PubMed]
  24. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
    [Crossref] [PubMed]
  25. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
    [Crossref] [PubMed]
  26. P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A 27(11), A37–A47 (2010).
    [Crossref] [PubMed]
  27. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
    [Crossref] [PubMed]
  28. P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
    [Crossref] [PubMed]
  29. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [Crossref] [PubMed]
  30. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  31. P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
    [Crossref] [PubMed]
  32. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” (2005), pp. 145–151.
  33. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
    [PubMed]
  34. A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
    [Crossref] [PubMed]
  35. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
    [Crossref] [PubMed]
  36. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).
    [Crossref]
  37. M. M. La Vail, “Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light,” Invest. Ophthalmol. 15(1), 64–70 (1976).
    [PubMed]
  38. L. D. Carter-Dawson and M. M. LaVail, “Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy,” J. Comp. Neurol. 188(2), 245–262 (1979).
    [Crossref] [PubMed]
  39. J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci. 54(13), 8237–8250 (2013).
    [Crossref] [PubMed]
  40. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express 3(4), 715–734 (2012).
    [Crossref] [PubMed]
  41. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 056007 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (4)

S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: Optical coherence tomography,” Opt. Lett. 38(22), 4801–4804 (2013).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Optical imaging of human cone photoreceptors directly following the capture of light,” PLoS One 8(11), e79251 (2013).
[Crossref] [PubMed]

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci. 54(13), 8237–8250 (2013).
[Crossref] [PubMed]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 056007 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (3)

2010 (3)

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
[PubMed]

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A 27(11), A37–A47 (2010).
[Crossref] [PubMed]

2009 (3)

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

2008 (2)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

2007 (3)

2003 (1)

2002 (2)

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

2001 (2)

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref] [PubMed]

1997 (1)

1991 (1)

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

1979 (1)

L. D. Carter-Dawson and M. M. LaVail, “Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy,” J. Comp. Neurol. 188(2), 245–262 (1979).
[Crossref] [PubMed]

1978 (1)

J. W. Hardy, “Active optics - new technology for control of light,” Proc. IEEE 66(6), 651–697 (1978).
[Crossref]

1976 (1)

M. M. La Vail, “Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light,” Invest. Ophthalmol. 15(1), 64–70 (1976).
[PubMed]

1974 (1)

Ahmad, K.

Albrecht, D. G.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

Ameer, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Aragón, J. L.

Artal, P.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref] [PubMed]

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Beaurepaire, E.

Bedggood, P.

X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination hilo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Optical imaging of human cone photoreceptors directly following the capture of light,” PLoS One 8(11), e79251 (2013).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

X. Zhou, P. Bedggood, and A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A 27(11), A37–A47 (2010).
[Crossref] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

Benito, A.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Boeke, B. R.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Bonora, S.

Booth, M. J.

Botcherby, E. J.

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Browne, S. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Buffington, A.

Campbell, M.

Carter-Dawson, L. D.

L. D. Carter-Dawson and M. M. LaVail, “Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy,” J. Comp. Neurol. 188(2), 245–262 (1979).
[Crossref] [PubMed]

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Chu, K. K.

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Crane, A. M.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

Cua, M.

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

Debarre, D.

Débarre, D.

Delori, F. C.

Donnelly Iii, W.

Dubra, A.

Facomprez, A.

Fienup, J. R.

Flannery, J. G.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Ford, T. N.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence hilo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Fried, D. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Fugate, R. Q.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Geng, Y.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci. 54(13), 8237–8250 (2013).
[Crossref] [PubMed]

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express 3(4), 715–734 (2012).
[Crossref] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Gradowski, M. A.

Gray, D. C.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Greenberg, K. P.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Hardy, J. W.

J. W. Hardy, “Active optics - new technology for control of light,” Proc. IEEE 66(6), 651–697 (1978).
[Crossref]

Hebert, T.

Hofer, H.

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Hunter, J. J.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Jian, Y.

La Vail, M. M.

M. M. La Vail, “Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light,” Invest. Ophthalmol. 15(1), 64–70 (1976).
[PubMed]

LaVail, M. M.

L. D. Carter-Dawson and M. M. LaVail, “Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy,” J. Comp. Neurol. 188(2), 245–262 (1979).
[Crossref] [PubMed]

Li, C.

Liang, J.

Libby, R. T.

Lim, D.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence hilo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Martin, J. A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

Merigan, W. H.

Mertz, J.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence hilo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Metha, A.

X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination hilo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Optical imaging of human cone photoreceptors directly following the capture of light,” PLoS One 8(11), e79251 (2013).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

X. Zhou, P. Bedggood, and A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A 27(11), A37–A47 (2010).
[Crossref] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

Metha, A. B.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

Miller, D. T.

Miller, J. J.

Muller, R. A.

Nguyen, H.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci. 54(13), 8237–8250 (2013).
[Crossref] [PubMed]

Porter, J.

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Queener, H.

Roberts, P. H.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Romero-Borja, F.

Roorda, A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
[PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Ruane, R. E.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Rylander, H. G.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Sarunic, M. V.

Schallek, J.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci. 54(13), 8237–8250 (2013).
[Crossref] [PubMed]

Schery, L. A.

Sharma, R.

Singer, B.

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Sliney, D. H.

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

Sredar, N.

Srinivas, S.

Sulai, Y. N.

Tam, J.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

Thomsen, S. L.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

Tyler, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Watanabe, T.

Webb, R. H.

Williams, D. R.

Wilson, T.

Wolfe, R.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Wong, K. S. K.

Wopat, L. M.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Xu, J.

Yin, L.

Zawadzki, R. J.

Zhou, X.

Biomed. Opt. Express (8)

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[Crossref] [PubMed]

Y. N. Sulai and A. Dubra, “Non-common path aberration correction in an adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 5(9), 3059–3073 (2014).
[Crossref] [PubMed]

X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination hilo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
[Crossref] [PubMed]

X. Zhou, P. Bedggood, and A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
[Crossref] [PubMed]

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express 3(4), 715–734 (2012).
[Crossref] [PubMed]

Invest. Ophthalmol. (1)

M. M. La Vail, “Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light,” Invest. Ophthalmol. 15(1), 64–70 (1976).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci. 54(13), 8237–8250 (2013).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence hilo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[Crossref] [PubMed]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 056007 (2013).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

L. D. Carter-Dawson and M. M. LaVail, “Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy,” J. Comp. Neurol. 188(2), 245–262 (1979).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods 109(2), 153–166 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Nature (1)

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered-light from a laser guide-star,” Nature 353(6340), 144–146 (1991).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optom. Vis. Sci. (1)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
[PubMed]

PLoS One (1)

P. Bedggood and A. Metha, “Optical imaging of human cone photoreceptors directly following the capture of light,” PLoS One 8(11), e79251 (2013).
[Crossref] [PubMed]

Proc. IEEE (1)

J. W. Hardy, “Active optics - new technology for control of light,” Proc. IEEE 66(6), 651–697 (1978).
[Crossref]

Vision Res. (1)

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Other (2)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” (2005), pp. 145–151.

J. Porter, Adaptive optics for vision science: Principles, practices, design, and applications (Wiley-Interscience, Hoboken, NJ, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Improvement of image quality metric C V R&C in a typical NS-AO run with a 20 D model eye 10° off-axis, using the human flood AO ophthalmoscope. ABOVE: Image quality (blue line plot) is plotted against frame number. The total number of frames is 580 in this example. Four iterations are used, separated by vertical black lines. The corresponding Zernike terms (black staircase plot) are also plotted against frame number. The best image quality value in each iteration is joined by red dashed lines (initially at 1.0) to show the improvement of image quality over time. BELOW: single frame representation of initial and final images. ROI size: ~0.5° x 0.5°. Scale bar = 50 µm.
Fig. 2
Fig. 2 Comparing the performance of different image quality metrics for NS-AO imaging with an image containing horizontally oriented spatial detail. Images were obtained from a 60 D model eye, 10° off-axis. LEFT panel: ratio plot showing normalized average radial energy from the Fourier transform of images shown on the right. Results were normalized against the uncorrected image (obtained without AO), represented as a horizontal dot-dashed line at 1.0. RIGHT panels: the corresponding images. All images were stretched to fill their colour map for display purposes. Imaging λ: 670 nm, pupil size: 3.75 mm. ROI size: ~0.6° x 0.7°. Scale bar: 50 µm.
Fig. 3
Fig. 3 Comparing the performance of different image quality metrics for NS-AO imaging with an image containing vertical and horizontal spatial detail. Images were obtained from a 60 D model eye, 10° off-axis, with different image features in the ROI. LEFT panel: ratio plot showing the normalized average radial energy from the Fourier transform of images shown on the right. Results were normalized against the uncorrected image (obtained without AO), represented as a horizontal dot-dashed line at 1.0. RIGHT panels: the corresponding images. All images were stretched to fill their colour map for display purposes. Imaging λ: 670 nm, pupil size: 3.75 mm. ROI size: ~0.7° x 0.7°. Scale bar: 50 µm.
Fig. 4
Fig. 4 Comparison of the image quality between WFS-AO and NS-AO images in a 60 D model eye on-axis. LEFT: ratio plot showing the average radial energy from the Fourier transform of the WFS-AO and NS-AO images, normalized to the uncorrected image, which is represented by a horizontal dot-dashed line at 1.0. RIGHT panels: the corresponding images. White arrow indicates the centre of the WFS beacon position in the WFS-AO image. All images were stretched to fill their colour map for display purposes. Wavefront sensing and imaging λ: 670 nm, pupil size: 3.75 mm. ROI size: ~1.3° x 1.3°. Scale bar: 50 µm.
Fig. 5
Fig. 5 Comparison of the image quality between WFS-AO and NS-AO in a 220 D model eye on-axis. LEFT: ratio plot showing the average radial energy from the Fourier transform of the WFS-AO and NS-AO images, normalized to the uncorrected image, which is represented by a horizontal dot-dashed line at 1.0. RIGHT panels: the corresponding images. White arrow indicates the centre of the WFS beacon position in the WFS-AO image. All images were stretched to fill their colour map for display purposes. Wavefront sensing and imaging λ: 670 nm, pupil size: 3.75 mm. ROI size: ~1.3° x 1.3°. Scale bar: 20 µm.
Fig. 6
Fig. 6 Zernike coefficients over a 3.5 mm pupil for 60 D (top) and 220 D (bottom) model eyes on-axis. These correspond to the NS-AO (blue) and Uncorrected (green) images in Figs. 4 and 5, with defocus (term 4) zeroed. For the NS-AO case, the coefficients shown are after the optimization process. The “-SHWS” case shows the pre-correction Zernike coefficients measured by the SHWS, with their signs reversed for comparison with the NS-AO case.
Fig. 7
Fig. 7 Comparison between WFS-AO and NS-AO in a 60 D model eye at 10° off-axis, which produces distortions of SHWS spots. a): Ratio plot showing average radial energy from the Fourier transform of the WFS-AO and NS-AO images, normalized to the Uncorrected image, which is represented by a horizontal dot-dashed line at 1.0. The corresponding images are also shown on the right. b): The distorted SHWS spots. Inset shows the degradation of SHWS spots. c): Undistorted SHWS spots from a 60 D model eye on-axis are also shown for comparison. Images were stretched to fill their colour map for display purposes. Wavefront sensing and imaging λ: 670 nm, pupil size: 3.75 mm. ROI size for (a): ~0.7°x0.7°. Scale bar: 50 µm.
Fig. 8
Fig. 8 Optimized NS-AO images of retinal cones in the dilated left eye of a human subject with our human flood AO ophthalmoscope, averaged from 100 frames. LEFT: 0.75° inferior to the fovea (fovea towards top of image). RIGHT: 2° temporal to the fovea (fovea towards left of image. Images were stretched to fill their colour map for display purposes. Imaging λ: 750 nm, pupil size: 7.6 mm. ROI size: ~0.6° x 0.6°. Scale bar: 25 µm.
Fig. 9
Fig. 9 A blood vessel ~10 µm in diameter in the rat eye before AO correction (LEFT) and after optimization by NS-AO with HiLo imaging (RIGHT), averaged from 25 frames. Images were stretched to fill their colour map for display purposes. Imaging λ: 532 nm, pupil size: 3.75 mm. ROI size: ~2° x 2°. Scale bar: 20 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C V All = σ all μ all
C V R&C = ( cv ¯ rows + cv ¯ cols ) 2
C=I×2× k n

Metrics