Abstract

Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes

Jie Xue, Acner Camino, Steven T. Bailey, Xiyu Liu, Dengwang Li, and Yali Jia
Biomed. Opt. Express 9(7) 3208-3219 (2018)

Advanced image processing for optical coherence tomographic angiography of macular diseases

Miao Zhang, Jie Wang, Alex D. Pechauer, Thomas S. Hwang, Simon S. Gao, Liang Liu, Li Liu, Steven T. Bailey, David J. Wilson, David Huang, and Yali Jia
Biomed. Opt. Express 6(12) 4661-4675 (2015)

Automated detection of shadow artifacts in optical coherence tomography angiography

Acner Camino, Yali Jia, Jeffrey Yu, Jie Wang, Liang Liu, and David Huang
Biomed. Opt. Express 10(3) 1514-1531 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
    [Crossref] [PubMed]
  2. R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
    [Crossref] [PubMed]
  3. P. T. de Jong, “Age-related macular degeneration,” N. Engl. J. Med. 355(14), 1474–1485 (2006).
    [Crossref] [PubMed]
  4. L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
    [Crossref] [PubMed]
  5. P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
    [Crossref] [PubMed]
  6. M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
    [Crossref] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  8. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [Crossref] [PubMed]
  9. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [Crossref] [PubMed]
  10. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [Crossref] [PubMed]
  11. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [Crossref] [PubMed]
  12. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
    [Crossref] [PubMed]
  13. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  14. S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
    [Crossref]
  15. Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
    [Crossref] [PubMed]
  16. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
    [Crossref] [PubMed]
  17. T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
    [Crossref] [PubMed]
  18. R. F. Spaide, “Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization,” Am. J. Ophthalmol. 160(1), 6–16 (2015).
    [Crossref] [PubMed]
  19. L. Kuehlewein, S. R. Sadda, and D. Sarraf, “OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy,” Eye (Lond) (2015).
  20. Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
    [Crossref] [PubMed]
  21. M. F. Kraus, J. J. Liu, J. Schottenhamml, C. L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
    [Crossref] [PubMed]
  22. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” in Medical Image Computing and Computer-Assisted Interventation (Springer, MICCAI, 1998), pp. 130–137.
  23. M. W. Law and A. C. Chung, “Three dimensional curvilinear structure detection using optimally oriented flux,” in Computer Vision–ECCV 2008, (Springer, 2008), pp. 368–382.
  24. D. Chen and L. D. Cohen, “Piecewise geodesics for vessel centerline extraction and boundary delineation with application to retina segmentation,” in Scale Space and Variational Methods in Computer Vision, (Springer, SSVM, 2015), pp. 270–281.
  25. A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013).
    [Crossref] [PubMed]
  26. O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
    [Crossref] [PubMed]
  27. S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012).
    [Crossref] [PubMed]
  28. L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
    [Crossref]
  29. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth International Conference on Computer Vision, (IEEE, Bombay, 1998), pp. 839–846.
    [Crossref]
  30. J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
    [Crossref] [PubMed]
  31. B. Lumbroso, D. Huang, C. C. Chen, Y. Jia, M. Rispoli, A. Romano, and N. K. Waheed, Clinical OCT Angiography Atlas (Jaypee Brothers Medical Publishers, 2015).
  32. Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
    [Crossref] [PubMed]

2015 (5)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

R. F. Spaide, “Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization,” Am. J. Ophthalmol. 160(1), 6–16 (2015).
[Crossref] [PubMed]

Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

2014 (3)

M. F. Kraus, J. J. Liu, J. Schottenhamml, C. L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
[Crossref] [PubMed]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

2013 (1)

A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2009 (2)

2008 (3)

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref] [PubMed]

2007 (2)

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref] [PubMed]

2006 (2)

P. T. de Jong, “Age-related macular degeneration,” N. Engl. J. Med. 355(14), 1474–1485 (2006).
[Crossref] [PubMed]

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

2004 (1)

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

2003 (1)

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

1998 (2)

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Adhi, M.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Akiba, M.

An, L.

Armour, R. L.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Baeza, A.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Baeza, M. L.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Bailey, S. T.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Baumal, C. R.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Bonini Filho, M. A.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Borji, A.

A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013).
[Crossref] [PubMed]

Branchini, L.

Budai, A.

Callahan, A.

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C. L.

Chen, Z.

Chin, A. T.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

de Carlo, T. E.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

de Jong, P. T.

P. T. de Jong, “Age-related macular degeneration,” N. Engl. J. Med. 355(14), 1474–1485 (2006).
[Crossref] [PubMed]

Donoso, L. A.

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

Duker, J. S.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

M. F. Kraus, J. J. Liu, J. Schottenhamml, C. L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
[Crossref] [PubMed]

Edmunds, B.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Etya’ale, D.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Ferrara, D.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Fingler, J.

Flaxel, C. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fraser, S. E.

Frost, A.

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

Fujimoto, J. G.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

M. F. Kraus, J. J. Liu, J. Schottenhamml, C. L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Gao, S. S.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Gattey, D. M.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Goferman, S.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012).
[Crossref] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grulkowski, I.

Hageman, G.

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

Hamilton, P.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hong, Y.

Hornegger, J.

Huang, D.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

Hwang, T. S.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Ishikawa, H.

Itti, L.

A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013).
[Crossref] [PubMed]

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

Jager, R. D.

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Jia, Y.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Kim, D.

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

Kim, N.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Kim, S.-H.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Klein, M. L.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Ko, T.

Koch, C.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

Kowalczyk, A.

Kraus, M. F.

M. F. Kraus, J. J. Liu, J. Schottenhamml, C. L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
[Crossref] [PubMed]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Lauer, A. K.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Lee, H.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Lee, J.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Leitgeb, R. A.

Li, G.

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

Lim, J. I.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, G.

Liu, J. J.

Lombardi, L. H.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

López-Sáez, M. P.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Lu, A. T.

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

Lu, C. D.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Makita, S.

Mariotti, S. P.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

McClintic, S. M.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Mieler, W. F.

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Miller, J. W.

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Miura, M.

Morrison, J. C.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Négrel, A.-D.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Niebur, E.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

Ordoqui, E.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Pararajasegaram, R.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Parikh, M.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Pascolini, D.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Pennesi, M. E.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Pokharel, G. P.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Potsaid, B.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qi, W.

Reichel, E.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Resnikoff, S.

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Sainza, T.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Schottenhamml, J.

Schuman, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, D.

Seo, J. B.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Shin, Y. G.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Shin, Y. M.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Spaide, R. F.

R. F. Spaide, “Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization,” Am. J. Ophthalmol. 160(1), 6–16 (2015).
[Crossref] [PubMed]

Stanga, P. E.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Subhash, H.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tal, A.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012).
[Crossref] [PubMed]

Tan, O.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

Tokayer, J.

Tornero, P.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Varma, R.

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

Waheed, N. K.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Wang, R. K.

Wang, X.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Wang, Y.

Wei, E.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Werner, J. S.

Wilson, D. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Witkin, A. J.

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Wojtkowski, M.

Wollstein, G.

Won, H. J.

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yu, L.

Zawadzki, R. J.

Zelnik-Manor, L.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012).
[Crossref] [PubMed]

Zhang, Q.

Zhang, X.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

Zubeldia, J. M.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

R. F. Spaide, “Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization,” Am. J. Ophthalmol. 160(1), 6–16 (2015).
[Crossref] [PubMed]

Ann. Allergy Asthma Immunol. (1)

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Comput. Methods Programs Biomed. (1)

J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim, “Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images,” Comput. Methods Programs Biomed. 88(1), 26–38 (2007).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012).
[Crossref] [PubMed]

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013).
[Crossref] [PubMed]

N. Engl. J. Med. (2)

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

P. T. de Jong, “Age-related macular degeneration,” N. Engl. J. Med. 355(14), 1474–1485 (2006).
[Crossref] [PubMed]

Ophthalmic Epidemiol. (1)

D. Pascolini, S. P. Mariotti, G. P. Pokharel, R. Pararajasegaram, D. Etya’ale, A.-D. Négrel, and S. Resnikoff, “2002 global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiol. 11(2), 67–115 (2004).
[Crossref] [PubMed]

Ophthalmology (5)

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[Crossref] [PubMed]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref] [PubMed]

T. E. de Carlo, M. A. Bonini Filho, A. T. Chin, M. Adhi, D. Ferrara, C. R. Baumal, A. J. Witkin, E. Reichel, J. S. Duker, and N. K. Waheed, “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology 122(6), 1228–1238 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[Crossref] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[Crossref] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv. Ophthalmol. 51(2), 137–152 (2006).
[Crossref] [PubMed]

Other (6)

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” in Medical Image Computing and Computer-Assisted Interventation (Springer, MICCAI, 1998), pp. 130–137.

M. W. Law and A. C. Chung, “Three dimensional curvilinear structure detection using optimally oriented flux,” in Computer Vision–ECCV 2008, (Springer, 2008), pp. 368–382.

D. Chen and L. D. Cohen, “Piecewise geodesics for vessel centerline extraction and boundary delineation with application to retina segmentation,” in Scale Space and Variational Methods in Computer Vision, (Springer, SSVM, 2015), pp. 270–281.

L. Kuehlewein, S. R. Sadda, and D. Sarraf, “OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy,” Eye (Lond) (2015).

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth International Conference on Computer Vision, (IEEE, Bombay, 1998), pp. 839–846.
[Crossref]

B. Lumbroso, D. Huang, C. C. Chen, Y. Jia, M. Rispoli, A. Romano, and N. K. Waheed, Clinical OCT Angiography Atlas (Jaypee Brothers Medical Publishers, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Overview of the developed choroidal neovascularization (CNV) detection algorithm.
Fig. 2
Fig. 2 The previous automated choroidal neovascularization (CNV) segmentation algorithm and proposed saliency algorithm. (A) Original outer retinal angiogram from a participant with neovascular age-related macular degeneration (AMD) showing artifacts and CNV. (B1) Inner retinal large vessel mask used to subtract large vessel projections from the outer retina. (B2) Filtered inner retina used to subtract artifacts from the outer retina. (C1) Outer retina with large vessel projections removed. (C2) Outer retina with artifacts removed. (D1) Gaussian filtering with the aim to reduce the remaining artifacts. (D2) Saliency map showing the CNV region. (E1) CNV area obtained by a threshold operator. (E2) CNV area obtained by multiplying the CNV membrane mask and original en face outer retinal angiogram and using a threshold operator. (F1) Multi-scale saliency results showing intermediate results of calculating the saliency map. (F2) Post-processing procedure including nonlinear filtering to enhance the boundaries and smooth the saliency map, Otsu’s method for determining the threshold, and morphological operations for obtaining the CNV membrane mask. (A, B2, C1, C2, D1) The display scale of decorrelation values ranges from 0.025 to 0.25.
Fig. 3
Fig. 3 En face OCT angiograms from all participants except for #5 which is shown in Fig. 4. The top row (A1-7) shows the en face maximum flow projection angiogram from the outer retinal slab without any additional processing. The second row (B1-5) shows the results of manual delineation of CNV by an expert human. The third row (C1-5) shows the results from the automated saliency algorithm. The bottom row (D1-5) shows the results from the previous automated algorithm. CNV areas, as delineated by a grader or algorithm, are shown below each processed image. The display scale of decorrelation values ranges from 0.025 to 0.25 for all images.
Fig. 4
Fig. 4 En face OCT angiograms from the case (participant #5) where there was the greatest difference in CNV area between the saliency algorithm and expert manual grading. (A) Inner retinal angiogram. (B) Outer retinal angiogram without any additional processing. (C) Manual delineation of CNV by an expert human. (D) Automated saliency algorithm. Yellow arrows highlight points of interest for comparison between C and D. (E) Previous automated algorithm. CNV areas, as delineated by a grader or algorithms, are shown below each processed image. (F) Choriocapillaris angiogram without any additional processing. The display scale of decorrelation values ranges from 0.025 to 0.25 for all images.
Fig. 5
Fig. 5 (A1) Original outer retinal angiogram. (A2) Outer retinal angiogram with inner retinal large vessel subtracted leaving motion artifacts and small vessel projections. (A3) Outer retinal angiogram with both large and small retinal vessels subtracted. (B1) Saliency map computed from A1 shows the CNV outline but is contaminated with large retinal vessel pattern. (B2) Saliency map computed from A2 shows CNV outline but is cluttered with a background haze. (B3) Saliency map computed from A3 shows a clean CNV pattern. (A1 to A3) The display scale of decorrelation values ranges from 0.025 to 0.25.

Tables (2)

Tables Icon

Table 1 Agreement Between Automated Algorithms and Manual Grading of Choroidal Neovascularization

Tables Icon

Table 2 Repeatability of Choroidal Neovascularization Quantification

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d orientation ( p i , p j )= 1 N d orientation ( p i , p j )| θ
d ( p i , p j ) = d b r i g h t ( p i , p j ) + d o r i e n t a t i o n ( p i , p j ) 2 ( 1 + c d p o s i t i o n ( p i , p j ) )
S i r = 1 exp { 1 K k = 1 K d ( p i r , q k r ) }
S i r = 1 exp { 1 K k = 1 K d ( p i r , q k r k ) }
S i = 1 M r R S i r
S i = 1 M r R S i r ( 1 d f o c i r ( i ) )
J ( I s , I m ) = | I s I m | | I s I m |

Metrics