Abstract

The efficacy of chemotherapy is related, in large part, to the concentration of drug that reaches tumor sites. Doxorubicin (DOX) is a common anti-cancer drug that is also approved for use in liposomal form for the treatment of ovarian cancer. We recently developed a porphyrin-phospholipid (PoP)-liposome system that enables on demand release of DOX from liposomes using near infrared irradiation to improve DOX bioavailability. Owing to its intrinsic fluorescence, it is possible, and desirable, to quantify DOX concentration and distribution, preferably noninvasively. Here we quantified DOX distribution following light-triggered drug release in phantoms and an animal carcass using spatial frequency domain imaging. This study demonstrates the feasibility of non-invasive quantitative mapping of DOX distributions in target areas.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy

Gabriel Ramirez, Ashley R. Proctor, Ki Won Jung, Tong Tong Wu, Songfeng Han, Russell R. Adams, Jingxuan Ren, Daniel K. Byun, Kelley S. Madden, Edward B. Brown, Thomas H. Foster, Parisa Farzam, Turgut Durduran, and Regine Choe
Biomed. Opt. Express 7(9) 3610-3630 (2016)

Lowering photosensitizer doses and increasing fluences induce apoptosis in tumor bearing mice

Katja Haedicke, Susanna Graefe, Ulf Teichgraeber, and Ingrid Hilger
Biomed. Opt. Express 7(7) 2641-2649 (2016)

Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report

Ulas Sunar, Daniel Rohrbach, Nestor Rigual, Erin Tracy, Ken Keymel, Michele T. Cooper, Heinz Baumann, and Barbara H. Henderson
Opt. Express 18(14) 14969-14978 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
    [Crossref] [PubMed]
  2. I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
    [Crossref] [PubMed]
  3. G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
    [Crossref] [PubMed]
  4. T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
    [Crossref] [PubMed]
  5. A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
    [PubMed]
  6. S. D. Li and L. Huang, “Pharmacokinetics and biodistribution of nanoparticles,” Mol. Pharm. 5(4), 496–504 (2008).
    [Crossref] [PubMed]
  7. K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
    [Crossref] [PubMed]
  8. S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
    [Crossref] [PubMed]
  9. H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
    [PubMed]
  10. T. M. Baran and T. H. Foster, “Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration,” Lasers Surg. Med. 45(8), 542–550 (2013).
    [PubMed]
  11. G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
    [Crossref] [PubMed]
  12. A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
    [Crossref] [PubMed]
  13. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
    [Crossref] [PubMed]
  14. U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report,” Opt. Express 18(14), 14969–14978 (2010).
    [Crossref] [PubMed]
  15. C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
    [Crossref] [PubMed]
  16. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique,” Appl. Opt. 40(34), 6389–6395 (2001).
    [Crossref] [PubMed]
  17. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
    [Crossref] [PubMed]
  18. J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt. 44(10), 1917–1933 (2005).
    [Crossref] [PubMed]
  19. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32(19), 3585–3595 (1993).
    [Crossref] [PubMed]
  20. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003).
    [Crossref] [PubMed]
  21. N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
    [Crossref] [PubMed]
  22. C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
    [PubMed]
  23. R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
    [Crossref] [PubMed]
  24. U. Sunar, D. J. Rohrbach, J. Morgan, N. Zeitouni, and B. W. Henderson, “Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging,” Biomed. Opt. Express 4(4), 531–537 (2013).
    [Crossref] [PubMed]
  25. B. Yang, M. Sharma, and J. W. Tunnell, “Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain,” J. Biomed. Opt. 18(8), 080503 (2013).
    [Crossref] [PubMed]
  26. J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
    [Crossref] [PubMed]
  27. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref] [PubMed]
  28. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35(10), 1780–1792 (1996).
    [Crossref] [PubMed]
  29. A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
    [Crossref]
  30. W. Mo, D. Rohrbach, and U. Sunar, “Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system,” J. Biomed. Opt. 17(7), 071306 (2012).
    [Crossref] [PubMed]
  31. M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
    [Crossref] [PubMed]
  32. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
    [Crossref] [PubMed]
  33. K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
    [Crossref] [PubMed]
  34. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
    [Crossref] [PubMed]
  35. T. Wu, J. Qu, T. H. Cheung, K. Lo, and M. Y. Yu, “Preliminary study of detecting neoplastic growths in vivo with real time calibrated autofluorescence imaging,” Opt. Express 11(4), 291–298 (2003).
    [Crossref] [PubMed]
  36. J. Y. Qu, Z. Huang, and J. Hua, “Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media,” Appl. Opt. 39(19), 3344–3356 (2000).
    [Crossref] [PubMed]
  37. T. M. Baran and T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
    [Crossref] [PubMed]
  38. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref] [PubMed]

2014 (2)

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

2013 (7)

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

B. Yang, M. Sharma, and J. W. Tunnell, “Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain,” J. Biomed. Opt. 18(8), 080503 (2013).
[Crossref] [PubMed]

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

T. M. Baran and T. H. Foster, “Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration,” Lasers Surg. Med. 45(8), 542–550 (2013).
[PubMed]

T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[Crossref] [PubMed]

U. Sunar, D. J. Rohrbach, J. Morgan, N. Zeitouni, and B. W. Henderson, “Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging,” Biomed. Opt. Express 4(4), 531–537 (2013).
[Crossref] [PubMed]

2012 (2)

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

W. Mo, D. Rohrbach, and U. Sunar, “Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system,” J. Biomed. Opt. 17(7), 071306 (2012).
[Crossref] [PubMed]

2011 (4)

T. M. Baran and T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[Crossref] [PubMed]

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

2010 (4)

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[Crossref] [PubMed]

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report,” Opt. Express 18(14), 14969–14978 (2010).
[Crossref] [PubMed]

2009 (5)

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

2008 (1)

S. D. Li and L. Huang, “Pharmacokinetics and biodistribution of nanoparticles,” Mol. Pharm. 5(4), 496–504 (2008).
[Crossref] [PubMed]

2007 (1)

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

2006 (1)

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

2003 (2)

2001 (2)

R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique,” Appl. Opt. 40(34), 6389–6395 (2001).
[Crossref] [PubMed]

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

2000 (1)

1998 (1)

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

1997 (1)

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

1996 (1)

1993 (1)

Abu-Yousif, A. O.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Adams, S.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Ahsan, B.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Alfano, R. R.

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

Allen, T. M.

T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[Crossref] [PubMed]

Arts, H. J. G.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Baran, T. M.

T. M. Baran and T. H. Foster, “Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration,” Lasers Surg. Med. 45(8), 542–550 (2013).
[PubMed]

T. M. Baran and T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[Crossref] [PubMed]

Bart, J.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Baumann, H.

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Boas, D. A.

Bogaards, A.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Boruta, R. J.

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Cao, W.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Carter, K. A.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Celli, J. P.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Chan, W. C. W.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Chang, S. K.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Cheung, T. H.

Choyke, P. L.

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

Cooper, M.

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

Cooper, M. T.

Crane, L. M. A.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Cuccia, D. J.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Cullis, P. R.

T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[Crossref] [PubMed]

Davis, S. C.

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

de Jong, J. S.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Dehghani, H.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Dewhirst, M. W.

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Diamond, K.

Diamond, K. R.

Durkin, A. J.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Esener, S.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Evans, C. L.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Fang, Q.

Farrell, T. J.

Feld, M. S.

Finkelstein, D.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Finlay, J. C.

Fleagle, J. T.

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

Follen, M.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Foster, T. H.

T. M. Baran and T. H. Foster, “Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration,” Lasers Surg. Med. 45(8), 542–550 (2013).
[PubMed]

T. M. Baran and T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[Crossref] [PubMed]

J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt. 44(10), 1917–1933 (2005).
[Crossref] [PubMed]

Frangioni, J. V.

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

Frederick, P. J.

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

Gabizon, A.

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

Gardner, C. M.

Geng, J.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Gibbs-Strauss, S. L.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Gioux, S.

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

Godoy, H.

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

Gordon, A. N.

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

Gore, M. E.

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

Goren, D.

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

Grigoryants, V. M.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Guthrie, D.

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

Harlaar, N. J.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Hasan, T.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Hayashi, T.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Henderson, B. H.

Henderson, B. W.

Hoopes, M. I.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Hoopes, P. J.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Horowitz, A. T.

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

Hua, J.

Huang, H.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Huang, L.

S. D. Li and L. Huang, “Pharmacokinetics and biodistribution of nanoparticles,” Mol. Pharm. 5(4), 496–504 (2008).
[Crossref] [PubMed]

Huang, Z.

Hutchins, J. E.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Hutchins, M.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Huynh, E.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Ibsen, S.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Intes, X.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Jacques, S. L.

Jiang, T.

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

Jin, C. S.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Jin, H.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Kanick, S. C.

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

Karttunen, M.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Kelder, W.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Kelly, K. M.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

Kepshire, D. S.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Keymel, K.

Khayat, M.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Khurana, M.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[Crossref] [PubMed]

Kim, A.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[Crossref] [PubMed]

Kim, C.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Kobayashi, H.

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

Kosaka, N.

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

Lacave, A. J.

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

Lan, L.

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Leblond, F.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Lele, S.

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

Li, S. D.

S. D. Li and L. Huang, “Pharmacokinetics and biodistribution of nanoparticles,” Mol. Pharm. 5(4), 496–504 (2008).
[Crossref] [PubMed]

Lilge, L.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Liu, C.

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

Lo, K.

Longmire, M.

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

Lossos, A.

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

Lovell, J. F.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Low, P. S.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Luo, D.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Marin, N.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Maytin, E. V.

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

Mazhar, A.

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

Mincu, N.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Mo, W.

W. Mo, D. Rohrbach, and U. Sunar, “Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system,” J. Biomed. Opt. 17(7), 071306 (2012).
[Crossref] [PubMed]

Morgan, J.

Moriyama, Y.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[Crossref] [PubMed]

Muzikansky, A.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Norton, J.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Ntziachristos, V.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

O’Hara, J. A.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Odunsi, K.

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

Ogawa, M.

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

Ortega, J.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Ozturk, M. S.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Padgett, N.

Palmer, G. M.

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Pandey, R. K.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Parkin, D. E.

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

Patterson, M. S.

Pfeifer, B. A.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Pleijhuis, R. G.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Pogue, B. W.

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Qu, J.

Qu, J. Y.

Rajaram, N.

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

Ramanujam, N.

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

Rava, R. P.

Richards-Kortum, R.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Rigual, N.

Rizvi, I.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Rohrbach, D.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

W. Mo, D. Rohrbach, and U. Sunar, “Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system,” J. Biomed. Opt. 17(7), 071306 (2012).
[Crossref] [PubMed]

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report,” Opt. Express 18(14), 14969–14978 (2010).
[Crossref] [PubMed]

Rohrbach, D. J.

Rollakanti, K. R.

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

Rubinstein, J. L.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Saager, R. B.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

Saggese, S.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

Sarantopoulos, A.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Scholes, C. P.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Shao, S.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Sharma, M.

B. Yang, M. Sharma, and J. W. Tunnell, “Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain,” J. Biomed. Opt. 18(8), 080503 (2013).
[Crossref] [PubMed]

Sheng, C.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Siegal, T.

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

Silver, S.

Song, W.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Spasojevic, I.

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Srinivasan, S.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

Sterenborg, H. J.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Su, Y.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Sunar, U.

Themelis, G.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Trachtenberg, J.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Tracy, E.

Tromberg, B. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

Tunnell, J. W.

B. Yang, M. Sharma, and J. W. Tunnell, “Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain,” J. Biomed. Opt. 18(8), 080503 (2013).
[Crossref] [PubMed]

Tzemach, D.

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

Vaddadi, P.

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

van Dam, G. M.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

van der Zee, A. G. J.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Viglianti, B. L.

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Vishwanath, K.

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

Wang, E.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Wang, L. V.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Weersink, R.

Welch, A. J.

Wilson, B. C.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[Crossref] [PubMed]

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Wrasidlo, W.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Wu, J.

Wu, T.

Yang, B.

B. Yang, M. Sharma, and J. W. Tunnell, “Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain,” J. Biomed. Opt. 18(8), 080503 (2013).
[Crossref] [PubMed]

Yu, M. Y.

Zahavy, E.

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Zeitouni, N.

Zhadin, N. N.

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

Zhang, G.

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Zheng, G.

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Acad. Radiol. (1)

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (2)

A. Gabizon, D. Goren, A. T. Horowitz, D. Tzemach, A. Lossos, and T. Siegal, “Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals,” Adv. Drug Deliv. Rev. 24(2-3), 337–344 (1997).
[Crossref]

T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[Crossref] [PubMed]

Appl. Opt. (6)

Biomed. Opt. Express (1)

Cancer Res. (1)

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan, “Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).
[Crossref] [PubMed]

Cancer Sci. (1)

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, “Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer,” Cancer Sci. 100(6), 1099–1104 (2009).
[Crossref] [PubMed]

Eur. J. Gynaecol. Oncol. (1)

H. Godoy, P. Vaddadi, M. Cooper, P. J. Frederick, K. Odunsi, and S. Lele, “Photodynamic therapy effectively palliates gynecologic malignancies,” Eur. J. Gynaecol. Oncol. 34(4), 300–302 (2013).
[PubMed]

J. Biomed. Opt. (11)

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

C. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17(7), 077012 (2012).
[PubMed]

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[Crossref] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

W. Mo, D. Rohrbach, and U. Sunar, “Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system,” J. Biomed. Opt. 17(7), 071306 (2012).
[Crossref] [PubMed]

B. Yang, M. Sharma, and J. W. Tunnell, “Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain,” J. Biomed. Opt. 18(8), 080503 (2013).
[Crossref] [PubMed]

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

T. M. Baran and T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[Crossref] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

J. Clin. Oncol. (1)

A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, and A. J. Lacave, “Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan,” J. Clin. Oncol. 19(14), 3312–3322 (2001).
[PubMed]

J. Control. Release (1)

G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

T. M. Baran and T. H. Foster, “Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration,” Lasers Surg. Med. 45(8), 542–550 (2013).
[PubMed]

Mol. Pharm. (1)

S. D. Li and L. Huang, “Pharmacokinetics and biodistribution of nanoparticles,” Mol. Pharm. 5(4), 496–504 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

K. A. Carter, S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell, “Porphyrin-phospholipid liposomes permeabilized by near-infrared light,” Nat. Commun. 5, 3546 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater. 10(4), 324–332 (2011).
[Crossref] [PubMed]

Nat. Med. (1)

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Photochem. Photobiol. (2)

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

S. Ibsen, E. Zahavy, W. Wrasidlo, T. Hayashi, J. Norton, Y. Su, S. Adams, and S. Esener, “Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue,” Photochem. Photobiol. 89(3), 698–708 (2013).
[Crossref] [PubMed]

Photonics Lasers Med. (1)

K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, “Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy,” Photonics Lasers Med. 2(4), 287–303 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup. (a) The system uses two LEDs (455 nm with a 20 nm band-pass filter and 590 nm) directed onto a DMD to project images of varying spatial frequencies onto tissue simulating phantoms or tissue (Target). The reflected light field is captured by an EMCCD camera with adjustable filters to selectively capture emission and excitation light. Crossed linear polarizers reduced specular reflection. (b) The picture of the setup.
Fig. 2
Fig. 2 (a) Uncorrected (raw) DOX fluorescence vs DOX concentration (b) Attenuation corrected DOX fluorescence vs DOX concentration using all phantoms at different absorption and scattering parameters. Error bars represent the standard deviation of the four phantoms at different concentrations.
Fig. 3
Fig. 3 Representative images of phantom with different optical properties of µa = 0.5 cm−1 (a-upper phantom), and µa = 1.0 cm−1 (b-lower phantom). (a) White light structural image of low-absorbing phantom (upper) and higher absorbing phantom (lower) (b) Uncorrected DOX fluorescence image from a phantom with the same added concentration (c) DOX fluorescence concentration indicating similar contrast.
Fig. 4
Fig. 4 Representative DOX quantification in a mouse carcass. (a) White light image showing the structure of the PoP injection and release site. (b) Uncorrected DOX fluorescence image after 60-minute illumination. (c) DOX concentration image after 60-minute illumination.
Fig. 5
Fig. 5 DOX release kinetics in phantoms. (a) The release characterized by uncorrected fluorescence changes. (b) The release characterized by corrected fluorescence changes. (c) The release characterized by the quantified DOX concentration changes.
Fig. 6
Fig. 6 DOX release kinetics in a mouse carcass. (a) Pre-treatment (b) 10 min post-treatment (c) 60 min post-treatment. (d) Complete DOX release kinetics curve with mean and standard deviation of the ROI.

Metrics