Abstract

In this study, functional near-infrared spectroscopy (fNIRS) was adopted to investigate the prefrontal cortical responses to deception under different motivations. By using a feigned memory impairment paradigm, 19 healthy adults were asked to deceive under the two different motivations: to obtain rewards and to avoid punishments. Results indicated that when deceiving for obtaining rewards, there was greater neural activation in the right inferior frontal gyrus (IFG) than the control condition. When deceiving for avoiding punishments, there was greater activation in the right inferior frontal gyrus (IFG) and the left middle frontal gyrus (MFG) than the control condition. In addition, deceiving for avoiding punishments led to greater neural activation in the left MFG than when deceiving for obtaining rewards. Furthermore, the results showed a moderate hit rate in detecting deception under either motivation. These results demonstrated that deception with different motivations led to distinct responses in the prefrontal cortex. fNIRS could provide a useful technique for the detection of deception with strategy of feigning memory impairment under different motivations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

Huilin Zhu, Jun Li, Yuebo Fan, Xinge Li, Dan Huang, and Sailing He
Biomed. Opt. Express 6(3) 690-701 (2015)

Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

Ning Liu, Xu Cui, Daniel M. Bryant, Gary H. Glover, and Allan L. Reiss
Biomed. Opt. Express 6(3) 1074-1089 (2015)

Optical imaging of the prefrontal activity in joint attention experience

Lina Qiu, Xiao Zhang, and Jun Li
Biomed. Opt. Express 6(9) 3437-3448 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34(1), 407–415 (2007).
    [Crossref] [PubMed]
  2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
    [Crossref] [PubMed]
  3. L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
    [Crossref] [PubMed]
  4. H. Zhu, J. Li, Y. Fan, X. Li, D. Huang, and S. He, “Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): a functional near-infrared spectroscopy study,” Biomed. Opt. Express 6(3), 690–701 (2015).
    [Crossref] [PubMed]
  5. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  6. A. Ginton, “Good intentions that fail to cope with the main point in CQT: a comment on Palmatier and Rovner (2015),” Int. J. Psychophysiol. 95(1), 25–28 (2015).
    [Crossref] [PubMed]
  7. J. P. Rosenfeld, “Alternative views of Bashore and Rapp’s (1993) alternatives to traditional polygraphy: A critique,” Psychol. Bull. 117(1), 159–166 (1995).
    [Crossref]
  8. M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
    [Crossref] [PubMed]
  9. M. Gamer, “Mind reading using neuroimaging: Is this the future of deception detection?” Eur. Psychol. 19(3), 172–183 (2014).
    [Crossref]
  10. S. Henry and D. Plemmons, “Neuroscience, neuropolitics and neuroethics: the complex case of crime, deception and FMRI,” Sci. Eng. Ethics 18(3), 573–591 (2012).
    [Crossref] [PubMed]
  11. X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
    [Crossref] [PubMed]
  12. A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
    [Crossref] [PubMed]
  13. N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
    [Crossref] [PubMed]
  14. T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
    [Crossref] [PubMed]
  15. S. M. Carlson, L. J. Moses, and H. R. Hix, “The role of inhibitory processes in young children’s difficulties with deception and false belief,” Child Dev. 69(3), 672–691 (1998).
    [Crossref] [PubMed]
  16. E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci. 24(1), 167–202 (2001).
    [Crossref] [PubMed]
  17. S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
    [Crossref] [PubMed]
  18. D. Sun, T. M. C. Lee, and C. C. H. Chan, “Unfolding the spatial and temporal neural processing of lying about face familiarity,” Cereb. Cortex 25(4), 927–936 (2015).
    [Crossref] [PubMed]
  19. B. Verschuere, T. Schuhmann, and A. T. Sack, “Does the inferior frontal sulcus play a functional role in deception? a neuronavigated theta-burst transcranial magnetic stimulation study,” Front. Hum. Neurosci. 6, 284 (2012).
    [Crossref] [PubMed]
  20. F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
    [Crossref] [PubMed]
  21. X. S. Hu, K. S. Hong, and S. S. Ge, “fNIRS-based online deception decoding,” J. Neural Eng. 9(2), 026012 (2012).
    [Crossref] [PubMed]
  22. K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
    [Crossref] [PubMed]
  23. A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
    [Crossref] [PubMed]
  24. R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
    [Crossref]
  25. E. Yechiam and G. Hochman, “Losses as modulators of attention: review and analysis of the unique effects of losses over gains,” Psychol. Bull. 139(2), 497–518 (2013).
    [Crossref] [PubMed]
  26. S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
    [Crossref] [PubMed]
  27. J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
    [Crossref] [PubMed]
  28. J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
    [Crossref] [PubMed]
  29. E. G. Mak and T. M. Lee, “Detection of feigned memory impairments using a Chinese word task,” Psychol. Rep. 98(3), 779–788 (2006).
    [Crossref] [PubMed]
  30. J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
    [Crossref] [PubMed]
  31. L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
    [Crossref] [PubMed]
  32. S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” Neuroimage 85(Pt 1), 72–91 (2014).
    [Crossref] [PubMed]
  33. K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
    [Crossref] [PubMed]
  34. X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
    [Crossref] [PubMed]
  35. O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
    [Crossref] [PubMed]
  36. I. D. Hill, “What are the sensitivity and specificity of serologic tests for celiac disease? Do sensitivity and specificity vary in different populations?” Gastroenterology 128(4Suppl 1), S25–S32 (2005).
    [Crossref] [PubMed]

2015 (3)

H. Zhu, J. Li, Y. Fan, X. Li, D. Huang, and S. He, “Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): a functional near-infrared spectroscopy study,” Biomed. Opt. Express 6(3), 690–701 (2015).
[Crossref] [PubMed]

A. Ginton, “Good intentions that fail to cope with the main point in CQT: a comment on Palmatier and Rovner (2015),” Int. J. Psychophysiol. 95(1), 25–28 (2015).
[Crossref] [PubMed]

D. Sun, T. M. C. Lee, and C. C. H. Chan, “Unfolding the spatial and temporal neural processing of lying about face familiarity,” Cereb. Cortex 25(4), 927–936 (2015).
[Crossref] [PubMed]

2014 (7)

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
[Crossref] [PubMed]

M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
[Crossref] [PubMed]

M. Gamer, “Mind reading using neuroimaging: Is this the future of deception detection?” Eur. Psychol. 19(3), 172–183 (2014).
[Crossref]

J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
[Crossref] [PubMed]

S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” Neuroimage 85(Pt 1), 72–91 (2014).
[Crossref] [PubMed]

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

2013 (2)

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

E. Yechiam and G. Hochman, “Losses as modulators of attention: review and analysis of the unique effects of losses over gains,” Psychol. Bull. 139(2), 497–518 (2013).
[Crossref] [PubMed]

2012 (9)

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

X. S. Hu, K. S. Hong, and S. S. Ge, “fNIRS-based online deception decoding,” J. Neural Eng. 9(2), 026012 (2012).
[Crossref] [PubMed]

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

S. Henry and D. Plemmons, “Neuroscience, neuropolitics and neuroethics: the complex case of crime, deception and FMRI,” Sci. Eng. Ethics 18(3), 573–591 (2012).
[Crossref] [PubMed]

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

B. Verschuere, T. Schuhmann, and A. T. Sack, “Does the inferior frontal sulcus play a functional role in deception? a neuronavigated theta-burst transcranial magnetic stimulation study,” Front. Hum. Neurosci. 6, 284 (2012).
[Crossref] [PubMed]

2009 (4)

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
[Crossref] [PubMed]

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

2008 (1)

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

2007 (2)

S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
[Crossref] [PubMed]

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34(1), 407–415 (2007).
[Crossref] [PubMed]

2006 (1)

E. G. Mak and T. M. Lee, “Detection of feigned memory impairments using a Chinese word task,” Psychol. Rep. 98(3), 779–788 (2006).
[Crossref] [PubMed]

2005 (2)

I. D. Hill, “What are the sensitivity and specificity of serologic tests for celiac disease? Do sensitivity and specificity vary in different populations?” Gastroenterology 128(4Suppl 1), S25–S32 (2005).
[Crossref] [PubMed]

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

2001 (2)

E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci. 24(1), 167–202 (2001).
[Crossref] [PubMed]

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
[Crossref]

1998 (1)

S. M. Carlson, L. J. Moses, and H. R. Hix, “The role of inhibitory processes in young children’s difficulties with deception and false belief,” Child Dev. 69(3), 672–691 (1998).
[Crossref] [PubMed]

1997 (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[Crossref] [PubMed]

1995 (1)

J. P. Rosenfeld, “Alternative views of Bashore and Rapp’s (1993) alternatives to traditional polygraphy: A critique,” Psychol. Bull. 117(1), 159–166 (1995).
[Crossref]

Abe, N.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Baumeister, R. F.

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
[Crossref]

Benhadid, A.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Boas, D. A.

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34(1), 407–415 (2007).
[Crossref] [PubMed]

Bortfeld, H.

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34(1), 407–415 (2007).
[Crossref] [PubMed]

Bouak, F.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Bratslavsky, E.

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
[Crossref]

Braun, M.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Browndyke, J. N.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Brubaker, L. E.

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

Burke, J. R.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Carlson, S. M.

S. M. Carlson, L. J. Moses, and H. R. Hix, “The role of inhibitory processes in young children’s difficulties with deception and false belief,” Child Dev. 69(3), 672–691 (1998).
[Crossref] [PubMed]

Chan, C. C. H.

D. Sun, T. M. C. Lee, and C. C. H. Chan, “Unfolding the spatial and temporal neural processing of lying about face familiarity,” Cereb. Cortex 25(4), 927–936 (2015).
[Crossref] [PubMed]

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

Chance, B.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[Crossref] [PubMed]

Chen, G.

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

Christ, S. E.

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

Cohen, J. D.

E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci. 24(1), 167–202 (2001).
[Crossref] [PubMed]

Cohen, R. A.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Crocker, L. D.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Ding, X. P.

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

Du, X.

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

Engels, A. S.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Falkiewicz, M.

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

Fan, Y.

Farah, M. J.

M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
[Crossref] [PubMed]

Felblinger, J.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Finkenauer, C.

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
[Crossref]

Fox, C. R.

S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
[Crossref] [PubMed]

Fox, P. T.

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

Frith, C. D.

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Fu, G.

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

Fujii, T.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Gamer, M.

M. Gamer, “Mind reading using neuroimaging: Is this the future of deception detection?” Eur. Psychol. 19(3), 172–183 (2014).
[Crossref]

Gao, J. H.

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

Ge, S. S.

X. S. Hu, K. S. Hong, and S. S. Ge, “fNIRS-based online deception decoding,” J. Neural Eng. 9(2), 026012 (2012).
[Crossref] [PubMed]

Ginton, A.

A. Ginton, “Good intentions that fail to cope with the main point in CQT: a comment on Palmatier and Rovner (2015),” Int. J. Psychophysiol. 95(1), 25–28 (2015).
[Crossref] [PubMed]

Grabowska, A.

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

Hayashi, A.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

He, S.

Heekeren, H. R.

N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
[Crossref] [PubMed]

Heller, W.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Henry, S.

S. Henry and D. Plemmons, “Neuroscience, neuropolitics and neuroethics: the complex case of crime, deception and FMRI,” Sci. Eng. Ethics 18(3), 573–591 (2012).
[Crossref] [PubMed]

Hill, I. D.

I. D. Hill, “What are the sensitivity and specificity of serologic tests for celiac disease? Do sensitivity and specificity vary in different populations?” Gastroenterology 128(4Suppl 1), S25–S32 (2005).
[Crossref] [PubMed]

Hix, H. R.

S. M. Carlson, L. J. Moses, and H. R. Hix, “The role of inhibitory processes in young children’s difficulties with deception and false belief,” Child Dev. 69(3), 672–691 (1998).
[Crossref] [PubMed]

Hochman, G.

E. Yechiam and G. Hochman, “Losses as modulators of attention: review and analysis of the unique effects of losses over gains,” Psychol. Bull. 139(2), 497–518 (2013).
[Crossref] [PubMed]

Hong, K. S.

X. S. Hu, K. S. Hong, and S. S. Ge, “fNIRS-based online deception decoding,” J. Neural Eng. 9(2), 026012 (2012).
[Crossref] [PubMed]

Hu, C. S.

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

Hu, X. S.

X. S. Hu, K. S. Hong, and S. S. Ge, “fNIRS-based online deception decoding,” J. Neural Eng. 9(2), 026012 (2012).
[Crossref] [PubMed]

Huang, D.

Hutchinson, J. B.

M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
[Crossref] [PubMed]

Ito, A.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Jang, J.

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

Jang, K. E.

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

Jednorog, K.

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

Jeong, Y.

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

Jung, J.

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

Kazzer, P.

N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
[Crossref] [PubMed]

Koessler, L.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Kozel, F. A.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
[Crossref] [PubMed]

Kwantes, P. J.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Lam, Q.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Lee, K.

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

Lee, T. M.

E. G. Mak and T. M. Lee, “Detection of feigned memory impairments using a Chinese word task,” Psychol. Rep. 98(3), 779–788 (2006).
[Crossref] [PubMed]

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

Lee, T. M. C.

D. Sun, T. M. C. Lee, and C. C. H. Chan, “Unfolding the spatial and temporal neural processing of lying about face familiarity,” Cereb. Cortex 25(4), 927–936 (2015).
[Crossref] [PubMed]

Lei, D.

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

Li, J.

Li, X.

Lisofsky, N.

N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
[Crossref] [PubMed]

Liu, H.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
[Crossref] [PubMed]

Liu, H. L.

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

Liu, J.

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

Maillard, L.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Mak, E. G.

E. G. Mak and T. M. Lee, “Detection of feigned memory impairments using a Chinese word task,” Psychol. Rep. 98(3), 779–788 (2006).
[Crossref] [PubMed]

Mandel, D. R.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Marchant, J. L.

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Marchewka, A.

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

McDermott, K. B.

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

McGregor, W. B.

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Miller, E. K.

E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci. 24(1), 167–202 (2001).
[Crossref] [PubMed]

Miller, G. A.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Mori, E.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Moses, L. J.

S. M. Carlson, L. J. Moses, and H. R. Hix, “The role of inhibitory processes in young children’s difficulties with deception and false belief,” Child Dev. 69(3), 672–691 (1998).
[Crossref] [PubMed]

Mugikura, S.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Nakashima, A.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Ng, Y. B.

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

Paskavitz, J.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Phelps, E. A.

M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
[Crossref] [PubMed]

Plemmons, D.

S. Henry and D. Plemmons, “Neuroscience, neuropolitics and neuroethics: the complex case of crime, deception and FMRI,” Sci. Eng. Ethics 18(3), 573–591 (2012).
[Crossref] [PubMed]

Poldrack, R. A.

S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
[Crossref] [PubMed]

Prehn, K.

N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
[Crossref] [PubMed]

Qiu, L.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Roepstorff, A.

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Rosenfeld, J. P.

J. P. Rosenfeld, “Alternative views of Bashore and Rapp’s (1993) alternatives to traditional polygraphy: A critique,” Psychol. Bull. 117(1), 159–166 (1995).
[Crossref]

Sack, A. T.

B. Verschuere, T. Schuhmann, and A. T. Sack, “Does the inferior frontal sulcus play a functional role in deception? a neuronavigated theta-burst transcranial magnetic stimulation study,” Front. Hum. Neurosci. 6, 284 (2012).
[Crossref] [PubMed]

Sai, L.

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

Sang, B.

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

Schmechel, D. E.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Schuhmann, T.

B. Verschuere, T. Schuhmann, and A. T. Sack, “Does the inferior frontal sulcus play a functional role in deception? a neuronavigated theta-burst transcranial magnetic stimulation study,” Front. Hum. Neurosci. 6, 284 (2012).
[Crossref] [PubMed]

Sharma, V.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
[Crossref] [PubMed]

Sip, K. E.

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Skewes, J. C.

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Smith, I.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Spielberg, J. M.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Sun, D.

D. Sun, T. M. C. Lee, and C. C. H. Chan, “Unfolding the spatial and temporal neural processing of lying about face familiarity,” Cereb. Cortex 25(4), 927–936 (2015).
[Crossref] [PubMed]

Sutton, B. P.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Sweet, L. H.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Szatkowska, I.

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

Szeszkowski, W.

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

Tak, S.

S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” Neuroimage 85(Pt 1), 72–91 (2014).
[Crossref] [PubMed]

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

Takahashi, S.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Tian, F.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
[Crossref] [PubMed]

Tom, S. M.

S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
[Crossref] [PubMed]

Trepel, C.

S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
[Crossref] [PubMed]

Tucker, K. A.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Ueno, A.

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Van Essen, D. C.

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

Vartanian, O.

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Verschuere, B.

B. Verschuere, T. Schuhmann, and A. T. Sack, “Does the inferior frontal sulcus play a functional role in deception? a neuronavigated theta-burst transcranial magnetic stimulation study,” Front. Hum. Neurosci. 6, 284 (2012).
[Crossref] [PubMed]

Vespignani, H.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Vignal, J. P.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[Crossref] [PubMed]

Vohs, K. D.

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
[Crossref]

Wagner, A. D.

M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
[Crossref] [PubMed]

Warren, S. L.

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Watson, J. M.

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

Welsh-Bohmer, K. A.

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Wruck, E.

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34(1), 407–415 (2007).
[Crossref] [PubMed]

Ye, J. C.

S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” Neuroimage 85(Pt 1), 72–91 (2014).
[Crossref] [PubMed]

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

Yechiam, E.

E. Yechiam and G. Hochman, “Losses as modulators of attention: review and analysis of the unique effects of losses over gains,” Psychol. Bull. 139(2), 497–518 (2013).
[Crossref] [PubMed]

Zhou, X.

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

Zhu, H.

Annu. Rev. Neurosci. (1)

E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci. 24(1), 167–202 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Brain Inj. (1)

J. N. Browndyke, J. Paskavitz, L. H. Sweet, R. A. Cohen, K. A. Tucker, K. A. Welsh-Bohmer, J. R. Burke, and D. E. Schmechel, “Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task,” Brain Inj. 22(6), 481–489 (2008).
[Crossref] [PubMed]

Brain Res. (2)

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303(25), 120–130 (2009).
[Crossref] [PubMed]

A. Ito, N. Abe, T. Fujii, A. Hayashi, A. Ueno, S. Mugikura, S. Takahashi, and E. Mori, “The contribution of the dorsolateral prefrontal cortex to the preparation for deception and truth-telling,” Brain Res. 1464(29), 43–52 (2012).
[Crossref] [PubMed]

Brain Topogr. (1)

L. Sai, X. Zhou, X. P. Ding, G. Fu, and B. Sang, “Detecting concealed information using functional near-infrared spectroscopy,” Brain Topogr. 27(5), 652–662 (2014).
[Crossref] [PubMed]

Cereb. Cortex (2)

S. E. Christ, D. C. Van Essen, J. M. Watson, L. E. Brubaker, and K. B. McDermott, “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex 19(7), 1557–1566 (2009).
[Crossref] [PubMed]

D. Sun, T. M. C. Lee, and C. C. H. Chan, “Unfolding the spatial and temporal neural processing of lying about face familiarity,” Cereb. Cortex 25(4), 927–936 (2015).
[Crossref] [PubMed]

Child Dev. (1)

S. M. Carlson, L. J. Moses, and H. R. Hix, “The role of inhibitory processes in young children’s difficulties with deception and false belief,” Child Dev. 69(3), 672–691 (1998).
[Crossref] [PubMed]

Cogn. Affect. Behav. Neurosci. (1)

J. M. Spielberg, G. A. Miller, S. L. Warren, A. S. Engels, L. D. Crocker, B. P. Sutton, and W. Heller, “Trait motivation moderates neural activation associated with goal pursuit,” Cogn. Affect. Behav. Neurosci. 12(2), 308–322 (2012).
[Crossref] [PubMed]

Eur. Psychol. (1)

M. Gamer, “Mind reading using neuroimaging: Is this the future of deception detection?” Eur. Psychol. 19(3), 172–183 (2014).
[Crossref]

Front. Hum. Neurosci. (2)

B. Verschuere, T. Schuhmann, and A. T. Sack, “Does the inferior frontal sulcus play a functional role in deception? a neuronavigated theta-burst transcranial magnetic stimulation study,” Front. Hum. Neurosci. 6, 284 (2012).
[Crossref] [PubMed]

O. Vartanian, P. J. Kwantes, D. R. Mandel, F. Bouak, A. Nakashima, I. Smith, and Q. Lam, “Right inferior frontal gyrus activation as a neural marker of successful lying,” Front. Hum. Neurosci. 7, 616 (2013).
[Crossref] [PubMed]

Front. Neurosci. (1)

K. E. Sip, J. C. Skewes, J. L. Marchant, W. B. McGregor, A. Roepstorff, and C. D. Frith, “What if I get busted? Deception, choice and decision-making in social interaction,” Front. Neurosci. 6, 58 (2012).
[Crossref] [PubMed]

Gastroenterology (1)

I. D. Hill, “What are the sensitivity and specificity of serologic tests for celiac disease? Do sensitivity and specificity vary in different populations?” Gastroenterology 128(4Suppl 1), S25–S32 (2005).
[Crossref] [PubMed]

Int. J. Psychophysiol. (1)

A. Ginton, “Good intentions that fail to cope with the main point in CQT: a comment on Palmatier and Rovner (2015),” Int. J. Psychophysiol. 95(1), 25–28 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).
[Crossref] [PubMed]

J. Neural Eng. (1)

X. S. Hu, K. S. Hong, and S. S. Ge, “fNIRS-based online deception decoding,” J. Neural Eng. 9(2), 026012 (2012).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

M. J. Farah, J. B. Hutchinson, E. A. Phelps, and A. D. Wagner, “Functional MRI-based lie detection: scientific and societal challenges,” Nat. Rev. Neurosci. 15(2), 123–131 (2014).
[Crossref] [PubMed]

Neuroimage (6)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34(1), 407–415 (2007).
[Crossref] [PubMed]

T. M. Lee, H. L. Liu, C. C. H. Chan, Y. B. Ng, P. T. Fox, and J. H. Gao, “Neural correlates of feigned memory impairment,” Neuroimage 28(2), 305–313 (2005).
[Crossref] [PubMed]

X. P. Ding, L. Sai, G. Fu, J. Liu, and K. Lee, “Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study,” Neuroimage 87(15), 505–514 (2014).
[Crossref] [PubMed]

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” Neuroimage 85(Pt 1), 72–91 (2014).
[Crossref] [PubMed]

Neuropsychologia (1)

N. Lisofsky, P. Kazzer, H. R. Heekeren, and K. Prehn, “Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies,” Neuropsychologia 61, 113–122 (2014).
[Crossref] [PubMed]

PLoS One (2)

X. P. Ding, X. Du, D. Lei, C. S. Hu, G. Fu, and G. Chen, “The neural correlates of identity faking and concealment: an FMRI study,” PLoS One 7(11), e48639 (2012).
[Crossref] [PubMed]

A. Marchewka, K. Jednorog, M. Falkiewicz, W. Szeszkowski, A. Grabowska, and I. Szatkowska, “Sex, Lies and fMRI-Gender Differences in Neural Basis of Deception,” PLoS One 7(8), e43076 (2012).
[Crossref] [PubMed]

Psychol. Bull. (2)

J. P. Rosenfeld, “Alternative views of Bashore and Rapp’s (1993) alternatives to traditional polygraphy: A critique,” Psychol. Bull. 117(1), 159–166 (1995).
[Crossref]

E. Yechiam and G. Hochman, “Losses as modulators of attention: review and analysis of the unique effects of losses over gains,” Psychol. Bull. 139(2), 497–518 (2013).
[Crossref] [PubMed]

Psychol. Rep. (1)

E. G. Mak and T. M. Lee, “Detection of feigned memory impairments using a Chinese word task,” Psychol. Rep. 98(3), 779–788 (2006).
[Crossref] [PubMed]

Rev. Gen. Psychol. (1)

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad is stronger than good,” Rev. Gen. Psychol. 5(4), 323–370 (2001).
[Crossref]

Sci. Eng. Ethics (1)

S. Henry and D. Plemmons, “Neuroscience, neuropolitics and neuroethics: the complex case of crime, deception and FMRI,” Sci. Eng. Ethics 18(3), 573–591 (2012).
[Crossref] [PubMed]

Science (1)

S. M. Tom, C. R. Fox, C. Trepel, and R. A. Poldrack, “The neural basis of loss aversion in decision-making under risk,” Science 315(5811), 515–518 (2007).
[Crossref] [PubMed]

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The time line for one trial in each condition.
Fig. 2
Fig. 2 The location of channels in the prefrontal cortex.
Fig. 3
Fig. 3 The topographic images of PFC: (A) The change in HbO from the “lying trials of deceiving for obtain rewards condition” minus “the truth-telling trials of the control condition; (B) The change in HbO from “the lying trials of deceiving for avoiding punishments condition” minus “the truth-telling trials of the control condition”; (C) The change in HbO from “the truth-telling trials of deceiving for obtaining rewards condition” minus “the truth-telling trials of the control condition”; (D) The change in HbO from “the truth-telling trials of deceiving for avoiding punishments condition” minus “the truth-telling trials of the control condition”. The locations of the channels are the same as in Fig. 2.
Fig. 4
Fig. 4 Neural activities in the three conditions: (A)The change in HbO from truth-telling trials of the control condition, lying trials of deceiving for obtaining rewards condition and lying trials of deceiving for avoiding punishments condition in Channel 8 (the right IFG); (B) The change in HbO from the truth-telling trials of the control condition, lying trials of deceiving for obtaining rewards condition and lying trials of deceiving for avoiding punishments condition in Channel 19 (the left MFG); (C) The change in HbO from truth-telling trials of the control condition, truth-telling trials of deceiving for obtaining rewards condition and truth-telling trials of deceiving for avoiding punishments condition in Channel 8 (the right IFG); (D)The change in HbO from truth-telling trials of the control condition, truth-telling trials of deceiving for obtaining rewards condition and truth-telling trails of deceiving for avoiding punishments condition in Channel 19 (the left MFG).

Tables (4)

Tables Icon

Table 1 The mean and standard error of reaction time (ms) are shown for truth-telling trials in the control condition, and both lying trials and truth-telling trials in the two deceiving conditions (mean ± standard error).

Tables Icon

Table 2 The mean and standard error of change in HbO are shown for truth-telling trials in the control condition, and lying trials in each deceiving condition (mean ± standard error).

Tables Icon

Table 3 The mean and standard error of change in HbO are shown for truth-telling trials in the control condition, and truth-telling trials in each deceiving condition (mean ± standard error).

Tables Icon

Table 4 The results of using different methods (RT data and fNIRS data) to detect deception under the motivations of obtaining rewards and of avoiding punishments

Metrics