Abstract

We perform rapid spontaneous Raman 2D imaging in light-sheet microscopy using continuous wave lasers and interferometric tunable filters. By angularly tuning the filter, the cut-on/off edge transitions are scanned along the excited Stokes wavelengths. This allows obtaining cumulative intensity profiles of the scanned vibrational bands, which are recorded on image stacks; resembling a spectral version of the knife-edge technique to measure intensity profiles. A further differentiation of the stack retrieves the Raman spectra at each pixel of the image which inherits the 3D resolution of the host light sheet system. We demonstrate this technique using solvent solutions and composites of polystyrene beads and lipid droplets immersed in agar and by imaging the C–H (2800-3100cm−1) region in a C. elegans worm. The image acquisition time results in 4 orders of magnitude faster than confocal point scanning Raman systems, allowing the possibility of performing fast spontaneous Raman·3D-imaging on biological samples.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope

Yusuke Oshima, Hidetoshi Sato, Hiroko Kajiura-Kobayashi, Tetsuaki Kimura, Kiyoshi Naruse, and Shigenori Nonaka
Opt. Express 20(15) 16195-16204 (2012)

Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles

Omar E. Olarte, Jacob Licea-Rodriguez, Jonathan A. Palero, Emilio J. Gualda, David Artigas, Jürgen Mayer, Jim Swoger, James Sharpe, Israel Rocha-Mendoza, Raul Rangel-Rojo, and Pablo Loza-Alvarez
Biomed. Opt. Express 3(7) 1492-1505 (2012)

Light sheet Raman micro-spectroscopy

Walter Müller, Martin Kielhorn, Michael Schmitt, Jürgen Popp, and Rainer Heintzmann
Optica 3(4) 452-457 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Dieing, O. Hollricher, and J. Toporski, “Confocal Raman Microscopy, Springer Series” in Optical Sciences 158 (Springer, 2011).
  2. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons Ltd, 2002)
  3. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent Antistokes Raman micro-spectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
    [Crossref]
  4. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref] [PubMed]
  5. A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
    [Crossref] [PubMed]
  6. A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
    [Crossref] [PubMed]
  7. Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Microscopic coherent Raman imaging using low-cost continuous wave lasers,” Laser Phys. Lett. 10(6), 065701 (2013).
    [Crossref]
  8. C. R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J. X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38(9), 1479–1481 (2013).
    [Crossref] [PubMed]
  9. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
    [Crossref] [PubMed]
  10. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  11. O. E. Olarte, J. Licea-Rodriguez, J. A. Palero, E. J. Gualda, D. Artigas, J. Mayer, J. Swoger, J. Sharpe, I. Rocha-Mendoza, R. Rangel-Rojo, and P. Loza-Alvarez, “Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles,” Biomed. Opt. Express 3(7), 1492–1505 (2012).
    [Crossref] [PubMed]
  12. I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41(10), 1099–1101 (2010).
    [Crossref]
  13. Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20(15), 16195–16204 (2012).
    [Crossref]
  14. K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
    [Crossref] [PubMed]
  15. P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
    [Crossref] [PubMed]
  16. M. Mauck, “Knife-edge profiling of Q-switched Nd:YAG laser beam and waist,” Appl. Opt. 18(5), 599–600 (1979).
    [Crossref] [PubMed]
  17. R. M. O’Connell and R. A. Vogel, “Simple accurate inversion of knife edge data froma radially symmetric laser-beams,” in Laser Induced Damage in Optical Materials: 1985 (NBS Spetial publication 746, 1988).
  18. D. Wrigth, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor - an international standardization approach,” Opt. Quantum Electron. 26, S993–S1000 (1992).
  19. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [Crossref] [PubMed]
  20. M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48(2), 393–396 (2009).
    [Crossref] [PubMed]
  21. M. González-Cardel, P. Arguijo, and R. Díaz-Uribe, “Gaussian beam radius measurement with a knife-edge: a polynomial approximation to the inverse error function,” Appl. Opt. 52(16), 3849–3855 (2013).
    [Crossref] [PubMed]
  22. Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
    [Crossref]
  23. S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
    [Crossref] [PubMed]
  24. N. Anderson, R. Beenson, and T. Erdogan, “Angle-Tuned Thin-Film Interference Filters for Spectral Imaging,” Opt. Photonics News 11, 12–13 (2011).
  25. L. Wang and T. Erdogan, “Tunable thin-film filter” US Patent US8441710 B2 (May 2013).
  26. I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
    [Crossref]
  27. M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
    [Crossref] [PubMed]
  28. T. Azzouz and R. Tauler, “Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples,” Talanta 74(5), 1201–1210 (2008).
    [Crossref] [PubMed]
  29. T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
    [Crossref] [PubMed]

2015 (1)

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref] [PubMed]

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

2011 (2)

N. Anderson, R. Beenson, and T. Erdogan, “Angle-Tuned Thin-Film Interference Filters for Spectral Imaging,” Opt. Photonics News 11, 12–13 (2011).

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

2010 (2)

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41(10), 1099–1101 (2010).
[Crossref]

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent Antistokes Raman micro-spectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

T. Azzouz and R. Tauler, “Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples,” Talanta 74(5), 1201–1210 (2008).
[Crossref] [PubMed]

2002 (1)

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

1992 (1)

D. Wrigth, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor - an international standardization approach,” Opt. Quantum Electron. 26, S993–S1000 (1992).

1983 (1)

1979 (1)

Abernathy, A.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Alfonso-García, A.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref] [PubMed]

Ali, J.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Amat-Roldan, I.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Anderson, N.

N. Anderson, R. Beenson, and T. Erdogan, “Angle-Tuned Thin-Film Interference Filters for Spectral Imaging,” Opt. Photonics News 11, 12–13 (2011).

Arguijo, P.

Artigas, D.

Austin, L.

D. Wrigth, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor - an international standardization approach,” Opt. Quantum Electron. 26, S993–S1000 (1992).

Azzouz, T.

T. Azzouz and R. Tauler, “Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples,” Talanta 74(5), 1201–1210 (2008).
[Crossref] [PubMed]

Balint, S.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Barman, I.

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41(10), 1099–1101 (2010).
[Crossref]

Beenson, R.

N. Anderson, R. Beenson, and T. Erdogan, “Angle-Tuned Thin-Film Interference Filters for Spectral Imaging,” Opt. Photonics News 11, 12–13 (2011).

Belew, M. Y.

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

Bishop, A. E.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Borri, P.

A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[Crossref] [PubMed]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent Antistokes Raman micro-spectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Cheng, J. X.

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

C. R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J. X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38(9), 1479–1481 (2013).
[Crossref] [PubMed]

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

Clerici, M.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

de Araújo, M. A.

de Lima, E.

de Oliveira, P. C.

Díaz-Uribe, R.

Duren, H. M.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

Erdogan, T.

N. Anderson, R. Beenson, and T. Erdogan, “Angle-Tuned Thin-Film Interference Filters for Spectral Imaging,” Opt. Photonics News 11, 12–13 (2011).

Fleischer, J.

D. Wrigth, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor - an international standardization approach,” Opt. Quantum Electron. 26, S993–S1000 (1992).

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Fujita, K.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Garetz, B. A.

González-Cardel, M.

Gualda, E. J.

Hamada, K.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Hench, L. L.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Hu, B.

Hu, C. D.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

Hu, C. R.

Huisken, J.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Inouye, Y.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Kajiura-Kobayashi, H.

Kawata, S.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Khosrofian, J. M.

Kii, T.

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

Kimura, T.

Kobayashi, M.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Langbein, W.

A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[Crossref] [PubMed]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent Antistokes Raman micro-spectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Le, T. T.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

Lee, E. S.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref] [PubMed]

Licea-Rodriguez, J.

Lin, J. D.

Liu, B.

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

Loza-Alvarez, P.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Marro, M.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Martínez-Lapiscina, E. H.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Mauck, M.

Mayer, J.

Mazhorova, A.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Meng, Z.

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Microscopic coherent Raman imaging using low-cost continuous wave lasers,” Laser Phys. Lett. 10(6), 065701 (2013).
[Crossref]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Mittal, R.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref] [PubMed]

Morandotti, R.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Moreno, B.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Nakajima, T.

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

Naruse, K.

Nonaka, S.

Notingher, I.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Ohgaki, H.

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

Olarte, O. E.

Oshima, Y.

Ozturk, Y.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Palero, J. A.

Pasquazi, A.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Peccianti, M.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Pereira, D. P.

Petrov, D.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Petrov, G. I.

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Microscopic coherent Raman imaging using low-cost continuous wave lasers,” Laser Phys. Lett. 10(6), 065701 (2013).
[Crossref]

Phing, S. H.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Polak, J. M.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Potma, E. O.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref] [PubMed]

Qin, Y.

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

Rangel-Rojo, R.

Rocha-Mendoza, I.

Romanska, H.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Sanchez-Dalmau, B.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Sato, H.

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Shalaby, M.

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Sharpe, J.

Silva, R.

Simpson, G.

Singh, G. P.

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41(10), 1099–1101 (2010).
[Crossref]

Slipchenko, M. N.

C. R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J. X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38(9), 1479–1481 (2013).
[Crossref] [PubMed]

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

Smith, N. I.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Swoger, J.

Tan, K. M.

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41(10), 1099–1101 (2010).
[Crossref]

Taubes, A.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Tauler, R.

T. Azzouz and R. Tauler, “Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples,” Talanta 74(5), 1201–1210 (2008).
[Crossref] [PubMed]

Tissenbaum, H. A.

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

Verrier, S.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Villoslada, P.

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

Wang, P.

Wang, X.

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Wrigth, D.

D. Wrigth, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor - an international standardization approach,” Opt. Quantum Electron. 26, S993–S1000 (1992).

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Yakovlev, V. V.

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Microscopic coherent Raman imaging using low-cost continuous wave lasers,” Laser Phys. Lett. 10(6), 065701 (2013).
[Crossref]

Zen, H.

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

Zhang, D.

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J. X. Cheng, “Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations,” Angew. Chem. Int. Ed. Engl. 53(44), 11787–11792 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent Antistokes Raman micro-spectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Biomed. Opt. Express (1)

Development (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

Y. Qin, T. Nakajima, H. Zen, X. Wang, T. Kii, and H. Ohgaki, “Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method,” Infrared Phys. Technol. 66, 146–151 (2014).
[Crossref]

J. Biomed. Opt. (2)

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, and P. Villoslada, “Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis,” J. Biophotonics 7(9), 724–734 (2014).
[Crossref] [PubMed]

J. Lipid Res. (1)

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, and J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41(10), 1099–1101 (2010).
[Crossref]

J. Spectroscopy (1)

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectroscopy 16(2), 43–51 (2002).
[Crossref]

Laser Phys. Lett. (1)

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Microscopic coherent Raman imaging using low-cost continuous wave lasers,” Laser Phys. Lett. 10(6), 065701 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photonics News (1)

N. Anderson, R. Beenson, and T. Erdogan, “Angle-Tuned Thin-Film Interference Filters for Spectral Imaging,” Opt. Photonics News 11, 12–13 (2011).

Opt. Quantum Electron. (1)

D. Wrigth, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor - an international standardization approach,” Opt. Quantum Electron. 26, S993–S1000 (1992).

Prog. Lipid Res. (1)

A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Sci. Rep. 5, 8551 (2015).
[Crossref] [PubMed]

Science (1)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Talanta (1)

T. Azzouz and R. Tauler, “Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples,” Talanta 74(5), 1201–1210 (2008).
[Crossref] [PubMed]

Other (4)

L. Wang and T. Erdogan, “Tunable thin-film filter” US Patent US8441710 B2 (May 2013).

R. M. O’Connell and R. A. Vogel, “Simple accurate inversion of knife edge data froma radially symmetric laser-beams,” in Laser Induced Damage in Optical Materials: 1985 (NBS Spetial publication 746, 1988).

T. Dieing, O. Hollricher, and J. Toporski, “Confocal Raman Microscopy, Springer Series” in Optical Sciences 158 (Springer, 2011).

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons Ltd, 2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) Computed gaussian erf function and b) derivative commonly used on KE experiments for beam intensity profile characterization; r is the beam radius of the measured beam. C) spectral KE technique for Raman spectra extraction, λcut-on/off are the edge transitions. The black curves correspond to the transmittance of aused ITF (Semrock TBP01-628/14) at 0°, −38 o and −55° while the Raman spectrum (gray curve) corresponds to DMSO.

Fig. 2
Fig. 2

Estimation of the spectral resolution for three different Raman excitation laser sources (as indicated). Horizontal lines (in gray) indicate typical spectral regions of interests for Raman studies (see text).

Fig. 3
Fig. 3

Raman LiShMS imaging setup. CW: continuous wave; GM: x-y Galvo-Mirror; SL: Scanning Lens; TL: Tube Lens; EO: Exciting Objective; CO: Collecting Objective; TF: Tuning Filter; θ: tilt angle of the filter. Inset: Spectral knife edge (KE) trace extraction from a 2D image stack at a region of interest I(x,y) with N as the total number of images, each taken at a different filter tilt angle.

Fig. 4
Fig. 4

Filter tuning calibration for the two laser excitation sources used in the experiments at 636 nm (a) and 532 nm (b), respectively. Markers indicate the measured edge cut-on/off wavelength transition (as labeled) while solid lines are the fitted curves using Eq. (3).

Fig. 5
Fig. 5

Raman LiShMS imaging in different organic solvents. Spectral KE traces (a) and derivatives (b) of DMSO (black) and glass (gray) covering the 1000-3200 cm−1 vibrational frequency range. Laser source at 532 nm, 15 mW, and 200 ms acquisition time per image. Images in (b) are the focused laser beam (left), the cuvette glass/solution interface (center), and the Raman light sheet (right) of glass (1) and DMSO (2), respectively. Scale bar length is 150 µm. Spectral KE traces (c) and derivatives (d) of DMSO, ethanol, and methanol (as labeled) covering the 2600-3100 cm−1 frequency range. Laser source at 636 nm, 20 mW and 7.4 sec acquisition time per spectra. Raman spectra taken with a commercial micro-Raman equipment (e).

Fig. 6
Fig. 6

Optical sectioning and hyperspectral capabilities of Raman LiShM with tunable filters. a) Wide field image, b) single plane Raman image, c) Raman LiShM and Micro-Raman spectra, and d) hyperspectral image of samples composed of 50 µm polystyrene (PS) beads and lipofundine (LF) immersed in agar at 1%. Green and red arrows indicate PS beads and LF lipid droplets, respectively. The hyperspectral Raman LiShM image shown in (d) is the z-projection of a stack of merged images at the 2945 cm−1 and 3054 cm−1 Raman peaks (indicated with arrows in (c)). The transversal image reconstructed from the optically sectioned planes is shown in the inset image of (d). . Dashed line in (d) is the plane of image (b). Scale bar in b) is 50 µm

Fig. 7
Fig. 7

Raman LiShMS on C. elegans in agar at 1% with polystyrene beads as Raman markers. a) Wide field image, b) single plane Raman image, c) upper panel: Raman LiSh spectra coming from the intestine of the worm (solid black line), autofluorescente background (dashed line) and the ratio between these two spectra (dotted line); bottom panel: micro-Raman spectroscopy of PS taken with the LiSh system (gray line) and with a confocal Raman microspectrometer (Solid gray curve). d) spectrally resolved Raman images at 2910cm−1 and e) at 2960 cm−1, respectively. Scale bars are 100 µm. Dashed line in (e) is the plane of image in (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I tr ( u )= I 0 [ 1±erf( 2 (u u 0 )/r ) ]/2,
Δ v ¯ = 10 7 ×Δλ/ λ cuton/off 2 ,
λ (θ) cuton/off =λ (0) cuton/off 1 sin 2 (θ)/ α 2 ,
v ¯ =( 1/ λ p 1/ λ S )× 10 7 c m 1 ,

Metrics