Abstract

Functional near-infrared spectroscopy (fNIRS) was used to measure the prefrontal activity in joint attention experience. 16 healthy adults participated in the experiment in which 42 optical channels were fixed over the anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus (IFG) and a small anterior portion of the superior temporal gyrus (STG). Video stimuli were used to engender joint or non-joint attention experience in observers. Cortical hemodynamic response and functional connectivity were measured and averaged across all subjects for each stimulus condition. Our data showed the activation in joint attention located in the aPFC and DLPFC bilaterally, but dominantly in the left hemisphere. This observation, together with the previous findings on infants and children, provides a clear developmental scenario on the prefrontal activation associated with joint attention process. In the case of non-joint attention condition, only a small region of the right DLPFC was activated. Functional connectivity was observed to be enhanced, but differently in joint and non-joint attention condition.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

Huilin Zhu, Jun Li, Yuebo Fan, Xinge Li, Dan Huang, and Sailing He
Biomed. Opt. Express 6(3) 690-701 (2015)

Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies

Huilin Zhu, Yuebo Fan, Huan Guo, Dan Huang, and Sailing He
Biomed. Opt. Express 5(4) 1262-1274 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Scaife and J. S. Bruner, “The capacity for joint visual attention in the infant,” Nature 253(5489), 265–266 (1975).
    [Crossref] [PubMed]
  2. M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
    [Crossref] [PubMed]
  3. P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
    [Crossref] [PubMed]
  4. J. Osterling and G. Dawson, “Early recognition of children with autism: A study of first birthday home videotapes,” J. Autism Dev. Disord. 24(3), 247–257 (1994).
    [Crossref] [PubMed]
  5. J. Osterling, G. Dawson, and J. Munson, “Early recognition of one year old infants with autism spectrum disorder versus mental retardation: A study of first birthday party home videotapes,” Dev. Psychopathol. 14, 239–252 (2002).
    [Crossref] [PubMed]
  6. J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
    [Crossref] [PubMed]
  7. W. Phillips, S. Baron-Cohen, and M. Rutter, “The role of eye contact in goal-detection: Evidence from normal toddlers and children with autism or mental handicap,” Dev. Psychopathol. 4(03), 375–384 (1992).
    [Crossref]
  8. P. Mundy, J. Card, and N. Fox, “EEG correlates of the development of infant joint attention skills,” Dev. Psychobiol. 36(4), 325–338 (2000).
    [Crossref] [PubMed]
  9. T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
    [Crossref]
  10. J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
    [Crossref] [PubMed]
  11. S. Materna, P. W. Dicke, and P. Thier, “Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20(1), 108–119 (2008).
    [Crossref] [PubMed]
  12. L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
    [Crossref] [PubMed]
  13. P. Mundy and L. Newell, “Attention, joint attention, and social cognition,” Curr. Dir. Psychol. Sci. 16(5), 269–274 (2007).
    [Crossref] [PubMed]
  14. P. Mundy and W. Jarrold, “Infant joint attention, neural networks and social cognition,” Neural Netw. 23(8-9), 985–997 (2010).
    [Crossref] [PubMed]
  15. T. Grossmann and M. H. Johnson, “Selective prefrontal cortex responses to joint attention in early infancy,” Biol. Lett. 6(4), 540–543 (2010).
    [Crossref] [PubMed]
  16. H. Zhu, J. Li, Y. Fan, X. Li, D. Huang, and S. He, “Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study,” Biomed. Opt. Express 6(3), 690–701 (2015).
    [Crossref] [PubMed]
  17. B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
    [Crossref] [PubMed]
  18. B. Zhu and A. Godavarty, “Functional connectivity in the brain in joint attention skills using near infrared spectroscopy and imaging,” Behav. Brain Res. 250, 28–31 (2013).
    [Crossref] [PubMed]
  19. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000).
    [Crossref] [PubMed]
  20. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
    [Crossref] [PubMed]
  21. Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology 40(4), 511–520 (2003).
    [Crossref] [PubMed]
  22. D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
    [Crossref] [PubMed]
  23. V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex,” Neuroimage 34(3), 1136–1148 (2007).
    [Crossref] [PubMed]
  24. N. Ramnani and A. M. Owen, “Anterior prefrontal cortex: insights into function from anatomy and neuroimaging,” Nat. Rev. Neurosci. 5(3), 184–194 (2004).
    [Crossref] [PubMed]
  25. L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
    [Crossref] [PubMed]
  26. L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
    [Crossref] [PubMed]
  27. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B 57, 289–300 (1995).
  28. Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
    [Crossref] [PubMed]
  29. J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
    [Crossref] [PubMed]
  30. D. Palomba, A. Angrilli, and A. Mini, “Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli,” Int. J. Psychophysiol. 27(1), 55–67 (1997).
    [Crossref] [PubMed]
  31. E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
    [Crossref] [PubMed]
  32. A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
    [Crossref] [PubMed]
  33. D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
    [Crossref] [PubMed]
  34. M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
    [Crossref] [PubMed]
  35. J. Fiser, C. Chiu, and M. Weliky, “Small modulation of ongoing cortical dynamics by sensory input during natural vision,” Nature 431(7008), 573–578 (2004).
    [Crossref] [PubMed]
  36. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
    [Crossref] [PubMed]

2015 (2)

H. Zhu, J. Li, Y. Fan, X. Li, D. Huang, and S. He, “Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study,” Biomed. Opt. Express 6(3), 690–701 (2015).
[Crossref] [PubMed]

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

2014 (3)

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

2013 (1)

B. Zhu and A. Godavarty, “Functional connectivity in the brain in joint attention skills using near infrared spectroscopy and imaging,” Behav. Brain Res. 250, 28–31 (2013).
[Crossref] [PubMed]

2012 (1)

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

2010 (5)

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

P. Mundy and W. Jarrold, “Infant joint attention, neural networks and social cognition,” Neural Netw. 23(8-9), 985–997 (2010).
[Crossref] [PubMed]

T. Grossmann and M. H. Johnson, “Selective prefrontal cortex responses to joint attention in early infancy,” Biol. Lett. 6(4), 540–543 (2010).
[Crossref] [PubMed]

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref] [PubMed]

2009 (2)

B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
[Crossref] [PubMed]

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

2008 (1)

S. Materna, P. W. Dicke, and P. Thier, “Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20(1), 108–119 (2008).
[Crossref] [PubMed]

2007 (3)

P. Mundy and L. Newell, “Attention, joint attention, and social cognition,” Curr. Dir. Psychol. Sci. 16(5), 269–274 (2007).
[Crossref] [PubMed]

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex,” Neuroimage 34(3), 1136–1148 (2007).
[Crossref] [PubMed]

2006 (2)

T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
[Crossref]

D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
[Crossref] [PubMed]

2005 (1)

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

2004 (2)

N. Ramnani and A. M. Owen, “Anterior prefrontal cortex: insights into function from anatomy and neuroimaging,” Nat. Rev. Neurosci. 5(3), 184–194 (2004).
[Crossref] [PubMed]

J. Fiser, C. Chiu, and M. Weliky, “Small modulation of ongoing cortical dynamics by sensory input during natural vision,” Nature 431(7008), 573–578 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology 40(4), 511–520 (2003).
[Crossref] [PubMed]

2002 (3)

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

J. Osterling, G. Dawson, and J. Munson, “Early recognition of one year old infants with autism spectrum disorder versus mental retardation: A study of first birthday party home videotapes,” Dev. Psychopathol. 14, 239–252 (2002).
[Crossref] [PubMed]

2000 (2)

1998 (2)

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

1997 (1)

D. Palomba, A. Angrilli, and A. Mini, “Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli,” Int. J. Psychophysiol. 27(1), 55–67 (1997).
[Crossref] [PubMed]

1995 (1)

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B 57, 289–300 (1995).

1994 (1)

J. Osterling and G. Dawson, “Early recognition of children with autism: A study of first birthday home videotapes,” J. Autism Dev. Disord. 24(3), 247–257 (1994).
[Crossref] [PubMed]

1992 (1)

W. Phillips, S. Baron-Cohen, and M. Rutter, “The role of eye contact in goal-detection: Evidence from normal toddlers and children with autism or mental handicap,” Dev. Psychopathol. 4(03), 375–384 (1992).
[Crossref]

1975 (1)

M. Scaife and J. S. Bruner, “The capacity for joint visual attention in the infant,” Nature 253(5489), 265–266 (1975).
[Crossref] [PubMed]

Adriany, G.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Angrilli, A.

D. Palomba, A. Angrilli, and A. Mini, “Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli,” Int. J. Psychophysiol. 27(1), 55–67 (1997).
[Crossref] [PubMed]

Arrigoni, F.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Baird, G.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Baron-Cohen, S.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

W. Phillips, S. Baron-Cohen, and M. Rutter, “The role of eye contact in goal-detection: Evidence from normal toddlers and children with autism or mental handicap,” Dev. Psychopathol. 4(03), 375–384 (1992).
[Crossref]

Bassett, D. S.

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

Benhadid, A.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Benjamini, Y.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B 57, 289–300 (1995).

Bente, G.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Bianchi, A. M.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Biswal, B. B.

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Block, J.

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref] [PubMed]

Bradshaw, S.

T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
[Crossref]

Braun, M.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Braver, T. S.

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

Bruner, J. S.

M. Scaife and J. S. Bruner, “The capacity for joint visual attention in the infant,” Nature 253(5489), 265–266 (1975).
[Crossref] [PubMed]

Butterworth, G.

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

Caparelli, E. C.

D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
[Crossref] [PubMed]

Card, J.

P. Mundy, J. Card, and N. Fox, “EEG correlates of the development of infant joint attention skills,” Dev. Psychobiol. 36(4), 325–338 (2000).
[Crossref] [PubMed]

Carpenter, M.

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

Cerutti, S.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Chang, L.

D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
[Crossref] [PubMed]

Charman, T.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Chen, X.

T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
[Crossref]

Chiu, C.

J. Fiser, C. Chiu, and M. Weliky, “Small modulation of ongoing cortical dynamics by sensory input during natural vision,” Nature 431(7008), 573–578 (2004).
[Crossref] [PubMed]

Choi, J. H.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Cleveland, A.

T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
[Crossref]

Cole, M. W.

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

Cox, A.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Dawson, G.

J. Osterling, G. Dawson, and J. Munson, “Early recognition of one year old infants with autism spectrum disorder versus mental retardation: A study of first birthday party home videotapes,” Dev. Psychopathol. 14, 239–252 (2002).
[Crossref] [PubMed]

J. Osterling and G. Dawson, “Early recognition of children with autism: A study of first birthday home videotapes,” J. Autism Dev. Disord. 24(3), 247–257 (1994).
[Crossref] [PubMed]

Delgado, C.

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

Dicke, P. W.

S. Materna, P. W. Dicke, and P. Thier, “Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20(1), 108–119 (2008).
[Crossref] [PubMed]

Drew, A.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Duan, L.

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

Eickhoff, S. B.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Elwell, C. E.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Ernst, T.

D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
[Crossref] [PubMed]

Fan, Y.

Fantini, S.

Felblinger, J.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Ferrari, M.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Filiaci, M.

Fink, G. R.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Fiser, J.

J. Fiser, C. Chiu, and M. Weliky, “Small modulation of ongoing cortical dynamics by sensory input during natural vision,” Nature 431(7008), 573–578 (2004).
[Crossref] [PubMed]

Fox, N.

P. Mundy, J. Card, and N. Fox, “EEG correlates of the development of infant joint attention skills,” Dev. Psychobiol. 36(4), 325–338 (2000).
[Crossref] [PubMed]

Franceschini, M. A.

Godavarty, A.

B. Zhu and A. Godavarty, “Functional connectivity in the brain in joint attention skills using near infrared spectroscopy and imaging,” Behav. Brain Res. 250, 28–31 (2013).
[Crossref] [PubMed]

B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
[Crossref] [PubMed]

Gratton, E.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000).
[Crossref] [PubMed]

Grossmann, T.

T. Grossmann and M. H. Johnson, “Selective prefrontal cortex responses to joint attention in early infancy,” Biol. Lett. 6(4), 540–543 (2010).
[Crossref] [PubMed]

He, S.

Hochberg, Y.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B 57, 289–300 (1995).

Hoshi, Y.

Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology 40(4), 511–520 (2003).
[Crossref] [PubMed]

Hu, X.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Huang, D.

Jarrold, W.

P. Mundy and W. Jarrold, “Infant joint attention, neural networks and social cognition,” Neural Netw. 23(8-9), 985–997 (2010).
[Crossref] [PubMed]

Johnson, M. H.

T. Grossmann and M. H. Johnson, “Selective prefrontal cortex responses to joint attention in early infancy,” Biol. Lett. 6(4), 540–543 (2010).
[Crossref] [PubMed]

Koessler, L.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Li, J.

Li, X.

Lu, C. M.

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Maggioni, E.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Maillard, L.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Materna, S.

S. Materna, P. W. Dicke, and P. Thier, “Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20(1), 108–119 (2008).
[Crossref] [PubMed]

Mesquita, R. C.

Michalos, A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Mini, A.

D. Palomba, A. Angrilli, and A. Mini, “Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli,” Int. J. Psychophysiol. 27(1), 55–67 (1997).
[Crossref] [PubMed]

Molteni, E.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Moore, C.

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

Mundy, P.

P. Mundy and W. Jarrold, “Infant joint attention, neural networks and social cognition,” Neural Netw. 23(8-9), 985–997 (2010).
[Crossref] [PubMed]

P. Mundy and L. Newell, “Attention, joint attention, and social cognition,” Curr. Dir. Psychol. Sci. 16(5), 269–274 (2007).
[Crossref] [PubMed]

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

P. Mundy, J. Card, and N. Fox, “EEG correlates of the development of infant joint attention skills,” Dev. Psychobiol. 36(4), 325–338 (2000).
[Crossref] [PubMed]

Munson, J.

J. Osterling, G. Dawson, and J. Munson, “Early recognition of one year old infants with autism spectrum disorder versus mental retardation: A study of first birthday party home videotapes,” Dev. Psychopathol. 14, 239–252 (2002).
[Crossref] [PubMed]

Nagell, K.

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

Newell, L.

P. Mundy and L. Newell, “Attention, joint attention, and social cognition,” Curr. Dir. Psychol. Sci. 16(5), 269–274 (2007).
[Crossref] [PubMed]

Osterling, J.

J. Osterling, G. Dawson, and J. Munson, “Early recognition of one year old infants with autism spectrum disorder versus mental retardation: A study of first birthday party home videotapes,” Dev. Psychopathol. 14, 239–252 (2002).
[Crossref] [PubMed]

J. Osterling and G. Dawson, “Early recognition of children with autism: A study of first birthday home videotapes,” J. Autism Dev. Disord. 24(3), 247–257 (1994).
[Crossref] [PubMed]

Owen, A. M.

N. Ramnani and A. M. Owen, “Anterior prefrontal cortex: insights into function from anatomy and neuroimaging,” Nat. Rev. Neurosci. 5(3), 184–194 (2004).
[Crossref] [PubMed]

Palomba, D.

D. Palomba, A. Angrilli, and A. Mini, “Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli,” Int. J. Psychophysiol. 27(1), 55–67 (1997).
[Crossref] [PubMed]

Parlade, M. V.

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

Paunescu, L. A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Peng, D. L.

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Perra, O.

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

Perrett, D. I.

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

Petersen, S. E.

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

Pfeuffer, J.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Phillips, W.

W. Phillips, S. Baron-Cohen, and M. Rutter, “The role of eye contact in goal-detection: Evidence from normal toddlers and children with autism or mental handicap,” Dev. Psychopathol. 4(03), 375–384 (1992).
[Crossref]

Pomares, Y.

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

Power, J. D.

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

Qiu, L.

Ramnani, N.

N. Ramnani and A. M. Owen, “Anterior prefrontal cortex: insights into function from anatomy and neuroimaging,” Nat. Rev. Neurosci. 5(3), 184–194 (2004).
[Crossref] [PubMed]

Rees, L.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Reni, G.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Rey, G.

B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
[Crossref] [PubMed]

Romanzetti, S.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Rutter, M.

W. Phillips, S. Baron-Cohen, and M. Rutter, “The role of eye contact in goal-detection: Evidence from normal toddlers and children with autism or mental handicap,” Dev. Psychopathol. 4(03), 375–384 (1992).
[Crossref]

Scaife, M.

M. Scaife and J. S. Bruner, “The capacity for joint visual attention in the infant,” Nature 253(5489), 265–266 (1975).
[Crossref] [PubMed]

Schilbach, L.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Shah, N. J.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Shmuel, A.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Striano, T.

T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
[Crossref]

Swettenham, J.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Taga, G.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Tepest, R.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Thier, P.

S. Materna, P. W. Dicke, and P. Thier, “Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20(1), 108–119 (2008).
[Crossref] [PubMed]

Tomasello, M.

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

Tomasi, D.

D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
[Crossref] [PubMed]

Toronov, V.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000).
[Crossref] [PubMed]

Toronov, V. Y.

V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex,” Neuroimage 34(3), 1136–1148 (2007).
[Crossref] [PubMed]

Triulzi, F. M.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Ugurbil, K.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Van de Moortele, P. F.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Van Hecke, A. V.

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

Vespignani, H.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Vignal, J. P.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Vogeley, K.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Waiter, G. D.

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

Webb, A. G.

V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex,” Neuroimage 34(3), 1136–1148 (2007).
[Crossref] [PubMed]

Weliky, M.

J. Fiser, C. Chiu, and M. Weliky, “Small modulation of ongoing cortical dynamics by sensory input during natural vision,” Nature 431(7008), 573–578 (2004).
[Crossref] [PubMed]

Wheelwright, S.

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

Whiten, A.

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

Williams, J. H. G.

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

Wilms, M.

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

Wolf, M.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Wolf, U.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Yacoub, E.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

Yadav, N.

B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
[Crossref] [PubMed]

Zang, Y. F.

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Zhang, X.

V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex,” Neuroimage 34(3), 1136–1148 (2007).
[Crossref] [PubMed]

Zhang, Y. J.

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Zhu, B.

B. Zhu and A. Godavarty, “Functional connectivity in the brain in joint attention skills using near infrared spectroscopy and imaging,” Behav. Brain Res. 250, 28–31 (2013).
[Crossref] [PubMed]

B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
[Crossref] [PubMed]

Zhu, C. Z.

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Zhu, H.

Zucca, C.

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

Behav. Brain Res. (2)

B. Zhu, N. Yadav, G. Rey, and A. Godavarty, “Diffuse optical imaging of brain activation to joint attention experience,” Behav. Brain Res. 202(1), 32–39 (2009).
[Crossref] [PubMed]

B. Zhu and A. Godavarty, “Functional connectivity in the brain in joint attention skills using near infrared spectroscopy and imaging,” Behav. Brain Res. 250, 28–31 (2013).
[Crossref] [PubMed]

Biol. Lett. (1)

T. Grossmann and M. H. Johnson, “Selective prefrontal cortex responses to joint attention in early infancy,” Biol. Lett. 6(4), 540–543 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Child Dev. (1)

P. Mundy, J. Block, C. Delgado, Y. Pomares, A. V. Van Hecke, and M. V. Parlade, “Individual differences and the development of joint attention in infancy,” Child Dev. 78(3), 938–954 (2007).
[Crossref] [PubMed]

Curr. Dir. Psychol. Sci. (1)

P. Mundy and L. Newell, “Attention, joint attention, and social cognition,” Curr. Dir. Psychol. Sci. 16(5), 269–274 (2007).
[Crossref] [PubMed]

Dev. Psychobiol. (1)

P. Mundy, J. Card, and N. Fox, “EEG correlates of the development of infant joint attention skills,” Dev. Psychobiol. 36(4), 325–338 (2000).
[Crossref] [PubMed]

Dev. Psychopathol. (2)

J. Osterling, G. Dawson, and J. Munson, “Early recognition of one year old infants with autism spectrum disorder versus mental retardation: A study of first birthday party home videotapes,” Dev. Psychopathol. 14, 239–252 (2002).
[Crossref] [PubMed]

W. Phillips, S. Baron-Cohen, and M. Rutter, “The role of eye contact in goal-detection: Evidence from normal toddlers and children with autism or mental handicap,” Dev. Psychopathol. 4(03), 375–384 (1992).
[Crossref]

Eur. J. Dev. Psychol. (1)

T. Striano, X. Chen, A. Cleveland, and S. Bradshaw, “Joint attention social cues influence infant learning,” Eur. J. Dev. Psychol. 3(3), 289–299 (2006).
[Crossref]

Hum. Brain Mapp. (1)

D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla,” Hum. Brain Mapp. 27(8), 694–705 (2006).
[Crossref] [PubMed]

Int. J. Psychophysiol. (1)

D. Palomba, A. Angrilli, and A. Mini, “Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli,” Int. J. Psychophysiol. 27(1), 55–67 (1997).
[Crossref] [PubMed]

J. Autism Dev. Disord. (1)

J. Osterling and G. Dawson, “Early recognition of children with autism: A study of first birthday home videotapes,” J. Autism Dev. Disord. 24(3), 247–257 (1994).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

J. Child Psychol. Psychiatry (1)

J. Swettenham, S. Baron-Cohen, T. Charman, A. Cox, G. Baird, A. Drew, L. Rees, and S. Wheelwright, “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants,” J. Child Psychol. Psychiatry 39(5), 747–753 (1998).
[Crossref] [PubMed]

J. Cogn. Neurosci. (2)

S. Materna, P. W. Dicke, and P. Thier, “Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20(1), 108–119 (2008).
[Crossref] [PubMed]

L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest, G. Bente, N. J. Shah, G. R. Fink, and K. Vogeley, “Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry,” J. Cogn. Neurosci. 22(12), 2702–2715 (2010).
[Crossref] [PubMed]

J. R. Stat. Soc. B (1)

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B 57, 289–300 (1995).

Monogr. Soc. Res. Child Dev. (1)

M. Carpenter, K. Nagell, M. Tomasello, G. Butterworth, and C. Moore, “Social cognition, joint attention, and communicative competence from 9 to 15 months of age,” Monogr. Soc. Res. Child Dev. 63(4), 1–143 (1998).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

N. Ramnani and A. M. Owen, “Anterior prefrontal cortex: insights into function from anatomy and neuroimaging,” Nat. Rev. Neurosci. 5(3), 184–194 (2004).
[Crossref] [PubMed]

Nature (2)

J. Fiser, C. Chiu, and M. Weliky, “Small modulation of ongoing cortical dynamics by sensory input during natural vision,” Nature 431(7008), 573–578 (2004).
[Crossref] [PubMed]

M. Scaife and J. S. Bruner, “The capacity for joint visual attention in the infant,” Nature 253(5489), 265–266 (1975).
[Crossref] [PubMed]

Neural Netw. (1)

P. Mundy and W. Jarrold, “Infant joint attention, neural networks and social cognition,” Neural Netw. 23(8-9), 985–997 (2010).
[Crossref] [PubMed]

Neuroimage (7)

J. H. G. Williams, G. D. Waiter, O. Perra, D. I. Perrett, and A. Whiten, “An fMRI study of joint attention experience,” Neuroimage 25(1), 133–140 (2005).
[Crossref] [PubMed]

E. Maggioni, E. Molteni, C. Zucca, G. Reni, S. Cerutti, F. M. Triulzi, F. Arrigoni, and A. M. Bianchi, “Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study,” Neuroimage 108, 410–422 (2015).
[Crossref] [PubMed]

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex,” Neuroimage 34(3), 1136–1148 (2007).
[Crossref] [PubMed]

Neuron (2)

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain,” Neuron 36(6), 1195–1210 (2002).
[Crossref] [PubMed]

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, “Intrinsic and task-evoked network architectures of the human brain,” Neuron 83(1), 238–251 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Psychophysiology (1)

Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology 40(4), 511–520 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Photo of a subject watching the computer monitor delivering the video stimuli. (b) The arrangement of the optodes with reference to the 4 EEG sites (FPz, AFz, FT7 and FT8) of the international 10-10 system.
Fig. 2
Fig. 2 Screenshots of video chips used as stimuli to engender joint attention (a) and non-joint attention (b) experience. The viewer (subject) experienced joint attention when watching the moving red dot together with the person on the screen. The viewer (subject) experienced non-joint attention when simply watching the moving dot without any coordination with the person on the screen.
Fig. 3
Fig. 3 Group-averaged HbO response patterns in joint (a) and non-joint (b) attention condition. The capital letter R (or L) in each map indicates the right (or left) hemisphere. The significant activation (in terms of enhanced HbO) regions are circled in red; while the significant deactivation (in terms of reduced HbO) regions are circled in blue. Threshold for significance was set at P <0.05 after the FDR correction.
Fig. 4
Fig. 4 Temporal responses to joint attention in the activation region (red line) and deactivation region (blue line). Joint attention task started at t = 0 s, t<0 was the rest period.
Fig. 5
Fig. 5 Group-averaged correlation matrices of HbO for all channel pairs for the rest (a), joint attention (b), and non-joint attention (c) condition. Each pixel value represents the correlation coefficient for the corresponding channel pair. Each number (1-42) in x- or y-axis indicates numbering of the optical channel.
Fig. 6
Fig. 6 Group-averaged HbO response patterns in joint attention in children (age: 8.1 ± 1.3 years old). The capital letter R (or L) in each map indicates the right (or left) hemisphere. The significant activation (in terms of enhanced HbO) regions are circled in red, including channel 9, 12, 14, 15 and 29. Threshold for significance was set at P <0.05 after the FDR correction. This is a replot from the data in ref [16] for typical developing children, with the method same as that used in Fig. 3. Note that in ref [16], only a part of optical channels (22 out of 42) located centrally were used for presenting the data.

Tables (2)

Tables Icon

Table 1 Enhanced connectivity identified by contrast of joint attention versus rest

Tables Icon

Table 2 Enhanced connectivity identified by contrast of non-joint attention versus rest

Metrics