Abstract

We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically optofluidic zoom system with a large zoom range and high-resolution image

Lei Li, Rong-Ying Yuan, Jin-Hui Wang, and Qiong-Hua Wang
Opt. Express 25(19) 22280-22291 (2017)

Ultrathin zoom telescopic objective

Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 24(16) 18674-18684 (2016)

Zoom lens design using liquid lens for laparoscope

Seungwan Lee, Minseog Choi, Eunsung Lee, Kyu-Dong Jung, Jong-hyeon Chang, and Woonbae Kim
Opt. Express 21(2) 1751-1761 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. S. Kino and T. R. Corle, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic Press, 1996).
  2. M. Minsky, “Microscopy apparatus,” US Patent, 1961.
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
    [Crossref] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  6. G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
    [Crossref]
  7. G. Li and H. Fang, “Parallel 3D Confocal Imaging with Varifocal Lens,” in Frontiers in Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper FWY4.
  8. H. Fang and G. Li, “Adaptive liquid lens actuated by electromagnetic solenoid,” in Frontiers in Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper FThU1.
  9. G. Li, X. Fang, and D. Zhao, “Design of a Parallel 3D Confocal Imaging System with Adaptive Objective Lens,” in Bio-optics: Design and Applications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper BTuA3.
  10. G. Li, “Parallel confocal imaging with adaptive lens,” presented at Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVIII conference, Photonics West, San Francisco, Jan. 27, 2011, paper 7904–53.
  11. G. Li, “Parallel 3D Confocal/OCM Imaging System with Adaptive Objective Lens,” presented at Design and Quality for Biomedical Technologies conference, Photonics West, San Francisco, Jan. 2012, paper 8215–18.
  12. G. Li and T. Mauger, “Adaptive lens for vision care and optical imaging,” in Frontiers in Optics, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper FM3A.2.
  13. G. Li, Z. Han, and G. Lan, Adaptive Electro-Optic Lenses for Vision Correction and Assessment, and Eye Imaging, presented at the 2012 Annual Meeting of The Association for Research in Vision and Ophthalmology, Fort Lauderdale, Florida, May 8, 2012, paper 3584.
  14. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  15. D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004).
    [Crossref] [PubMed]
  16. Y. C. Fang and C. M. Tsai, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A, Pure Appl. Opt. 10(7), 075304 (2008).
    [Crossref]
  17. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
    [Crossref] [PubMed]
  18. J. H. Sun, B. R. Hsueh, Y. C. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48(9), 1741–1757 (2009).
    [Crossref] [PubMed]
  19. A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
    [Crossref] [PubMed]
  20. Y. C. Fang, C. M. Tsai, and C. L. Chung, “A study of optical design and optimization of zoom optics with liquid lenses through modified genetic algorithm,” Opt. Express 19(17), 16291–16302 (2011).
    [Crossref] [PubMed]
  21. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [Crossref] [PubMed]
  22. C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
    [Crossref]
  23. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
    [Crossref] [PubMed]
  24. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  25. G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [Crossref]
  26. M. Amberg, A. Oeder, S. Sinzinger, P. J. W. Hands, and G. D. Love, “Tuneable planar integrated optical systems,” Opt. Express 15(17), 10607–10614 (2007).
    [Crossref] [PubMed]
  27. S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
    [Crossref]
  28. H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [Crossref]
  29. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
    [Crossref]
  30. J. K. Lee, K. W. Park, G. Lim, H. R. Kim, and S. H. Kong, “Variable-focus Liquid Lens Based on a Laterally-integrated Thermopneumatic Actuator,” J. Opt. Soc. Korea 16(1), 22–28 (2012).
    [Crossref]
  31. http://www.varioptic.com .
  32. http://www.optotune.com .
  33. N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
    [Crossref]
  34. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [Crossref] [PubMed]
  35. J. A. Curcio and C. C. Petty, “The Near Infrared Absorption Spectrum of Liquid Water,” J. Opt. Soc. Am. 41(5), 302 (1951).
    [Crossref]
  36. A. E. Conrady, Applied Optics and Optical Design (Dover Publications Inc., New York, 1960).
  37. D. Malacara-Hernández and Z. Malacara-Hernández, Handbook of Optical Design, 3rd ed. (CRC Press, 2013).

2012 (1)

2011 (1)

2010 (2)

2009 (5)

2008 (3)

Y. C. Fang and C. M. Tsai, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A, Pure Appl. Opt. 10(7), 075304 (2008).
[Crossref]

F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[Crossref] [PubMed]

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
[Crossref]

2007 (3)

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

M. Amberg, A. Oeder, S. Sinzinger, P. J. W. Hands, and G. D. Love, “Tuneable planar integrated optical systems,” Opt. Express 15(17), 10607–10614 (2007).
[Crossref] [PubMed]

2006 (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

2005 (1)

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004).
[Crossref] [PubMed]

2003 (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1993 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1951 (1)

Amberg, M.

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Äyräs, P.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Cavallotti, C.

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cho, S. H.

Choi, W. B.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Chung, C. L.

Curcio, J. A.

Dario, P.

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

De Nicola, S.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Fang, Y. C.

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

Ferraro, P.

Finizio, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grilli, S.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Han, S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Hands, P. J. W.

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

Honkanen, S.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hsueh, B. R.

Hu, C. C.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Justis, N.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

Kang, M. S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kik, P. G.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
[Crossref]

Kim, H. R.

Kim, Y. M.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Kong, S. H.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lee, J. K.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Li, G.

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Lim, G.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lo, Y. H.

Love, G. D.

MacDonald, J.

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Menciassi, A.

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Miccio, L.

Miks, A.

Min, N. K.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Murali, S.

Novak, J.

Oeder, A.

Park, K. W.

Paturzo, M.

Petty, C. C.

Peyghambarian, N.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Piccigallo, M.

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ren, H.

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Riza, N. A.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
[Crossref]

Rolland, J. P.

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Seo, J. H.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Seo, S. W.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Sheikh, M.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
[Crossref]

Sinzinger, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, J. H.

Sung, M. Y.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Susilo, E.

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Thompson, K. P.

Tsai, C. M.

Y. C. Fang, C. M. Tsai, and C. L. Chung, “A study of optical design and optimization of zoom optics with liquid lenses through modified genetic algorithm,” Opt. Express 19(17), 16291–16302 (2011).
[Crossref] [PubMed]

Y. C. Fang and C. M. Tsai, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A, Pure Appl. Opt. 10(7), 075304 (2008).
[Crossref]

Tsai, F. S.

Valdastri, P.

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

Valley, P.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Vasko, B.

Vasko, J.

Vespini, V.

Webb-Wood, G.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
[Crossref]

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Wu, S. T.

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Zhang, D. Y.

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

Y. C. Fang and C. M. Tsai, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A, Pure Appl. Opt. 10(7), 075304 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Nature (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Eng. (1)

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47(6), 063201 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Prog. Opt. (1)

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “An integrated vision system with autofocus for wireless capsular endoscopy,” Sens. Actuators A Phys. 156(1), 72–78 (2009).
[Crossref]

Other (13)

A. E. Conrady, Applied Optics and Optical Design (Dover Publications Inc., New York, 1960).

D. Malacara-Hernández and Z. Malacara-Hernández, Handbook of Optical Design, 3rd ed. (CRC Press, 2013).

http://www.varioptic.com .

http://www.optotune.com .

G. Li and H. Fang, “Parallel 3D Confocal Imaging with Varifocal Lens,” in Frontiers in Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper FWY4.

H. Fang and G. Li, “Adaptive liquid lens actuated by electromagnetic solenoid,” in Frontiers in Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper FThU1.

G. Li, X. Fang, and D. Zhao, “Design of a Parallel 3D Confocal Imaging System with Adaptive Objective Lens,” in Bio-optics: Design and Applications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper BTuA3.

G. Li, “Parallel confocal imaging with adaptive lens,” presented at Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVIII conference, Photonics West, San Francisco, Jan. 27, 2011, paper 7904–53.

G. Li, “Parallel 3D Confocal/OCM Imaging System with Adaptive Objective Lens,” presented at Design and Quality for Biomedical Technologies conference, Photonics West, San Francisco, Jan. 2012, paper 8215–18.

G. Li and T. Mauger, “Adaptive lens for vision care and optical imaging,” in Frontiers in Optics, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper FM3A.2.

G. Li, Z. Han, and G. Lan, Adaptive Electro-Optic Lenses for Vision Correction and Assessment, and Eye Imaging, presented at the 2012 Annual Meeting of The Association for Research in Vision and Ophthalmology, Fort Lauderdale, Florida, May 8, 2012, paper 3584.

G. S. Kino and T. R. Corle, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic Press, 1996).

M. Minsky, “Microscopy apparatus,” US Patent, 1961.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Working principle of the liquid-filled membrane lens.
Fig. 2
Fig. 2 Schamatic of liquid lens. (a) shows the geometry of liquid lens with aperture “D”, principal planes’ distance “Δt” (0 ~T), and radius of membrane surface “r”. While the power of liquid lens changes, the front principal plane in (a) and back principal plane in (b) are shafted accordingly.
Fig. 3
Fig. 3 Inserting liquid lens into a simple model, which has two positive lenses. (a) Potential locations to insert liquid lens. (b) Initial structure of tunable objective to be optimized.
Fig. 4
Fig. 4 Schematic of the compound adaptive objective, which include the front group, liquid lens, and the back group. The lenses and lens groups are represented by the principal planes.
Fig. 5
Fig. 5 Layout of the optical depth-scanning objective implemented with a focal tunable liquid lens, which includes front group, liquid lens and back group. Each surface is numbered accordingly.
Fig. 6
Fig. 6 Zooming relations. (a) Focal length relation between the liquid lens and the compound objective lens during zooming. (b) Power relation between the liquid lens and the compound objective lens. (c) Relation between the focal length change and the working distance change for the objective lens.
Fig. 7
Fig. 7 Chromatic focal shift among these configurations.
Fig. 8
Fig. 8 Spot diagram of different configurations. (a) ~ (f): Configs. 1- 6. Different colors indicates different selected wavelengths. The black circles are the Airy discs at 800nm under the corresponding NAs of the Configs. 1-6.
Fig. 9
Fig. 9 Polychromatic Diffraction MTF of different configurations. (a) ~(f): Configs. 1 - 6.
Fig. 10
Fig. 10 Relative distortion. (a) Relative distortion difference at wavelength between 760nm and 920nm in Configs. 1 - 6. (b) Relative distortion calculated at wavelength of 800nm in Configs. 1 - 6.

Tables (3)

Tables Icon

Table 1 Specification of the optical dept-scanning objective

Tables Icon

Table 2 General parameters of the system (when liquid lens surface is flat)

Tables Icon

Table 3 Zoom parameters of the system

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P liquid = n1 r .
r= Δt 2 + D 2 8Δt .
P liquid (Δt)= 8(n1)Δt 4Δ t 2 + D 2 .
P(Δt)= P 1 + h liquid (Δt) h 1 P liquid (Δt)+ h 2 (Δt) h 1 P 2 ,
h liquid (Δt) h 1 =1 d 1 (Δt) P 1 ,
h 2 (Δt) h 1 = h liquid (Δt) h 1 h 2 (Δt) h liquid (Δt) =[1 d 1 (Δt) P 1 ][1 d 2 (Δt) 1 d 1 (Δt) P 1 P 1 +[1 d 1 (Δt) P 1 ] P liquid (Δt) Δt ].
{ d 1 (Δt)= d 1 (0)Δt, d 2 (Δt)= d 2 (0).
{ d 1 (Δt)= d 1 (0), d 2 (Δt)= d 2 (0)Δt.
P(0)= P 1 +{1[( d 1 (0)+ d 2 (0)] P 1 } P 2 .
P(T)= P 1 +[1 d 1 (0)] P liquid (T) +[1 d 1 (0) P 1 ]{1 d 2 (0)T 1 d 1 (0) P 1 P 1 +[1 d 1 (0) P 1 ] P liquid (T) T } P 2 .
Δ P max =P(T)P(0) =[1 d 1 (0) P 1 ]{ P liquid (T)+ d 2 (0) P 1 1 d 1 (0) P 1 P 2 d 2 (0)T 1 d 1 (0) P 1 P 1 +[1 d 1 (0) P 1 ] P liquid (T) T P 2 }.
d 2 (0)T 1 d 1 (0) P 1 P 1 +[1 d 1 (0) P 1 ] P liquid (T) T d 2 (0) 1 d 1 (0) P 1 P 1 +[1 d 1 (0) P 1 ] P liquid (T) .
Δ P max [1 d 1 (0) P 1 ][1 d 2 (0) P 2 ] P liquid (T).
Δ F max = 1 P(0) 1 P(T) .
F B (Δt)= h 2 (Δt) h 1 1 P(Δt) d back .
Δ F B(max) = F B (0) F B (T)= h 2 (0) h 1 1 P(0) h 2 (T) h 1 1 P(T) ,
{ h 2 (0) h 1 = 1[( d 1 (0)+ d 2 (0)] P 1 , h 2 (T) h 1 = [1 d 1 (0) P 1 ]{1 d 2 (0)T 1 d 1 (0) P 1 P 1 +[1 d 1 (0) P 1 ] P liquid (T) T } 1[ d 1 (0)+ d 2 (0)] P 1 d 2 (0)[1 d 1 (0) P 1 ] P liquid (T).
Δ F B(max) Δ F max [1 h 2 (T) h 1 ]P(0)[1 h 2 (0) h 1 ]P(T) P(0)P(T)
[1 h 2 (T) h 1 )]P(0)[1 h 2 (0) h 1 ]P(T)>0.
[1 h 2 (T) h 1 ]P(0)[1 h 2 (0) h 1 ]P(T) [1 d 1 (0) P 1 ][ d 2 (0) P 2 d 1 (0) P 1 ] P liquid (T).
{ d 1 (0)< 1 P 1 , d 2 (0)> P 1 P 2 d 1 (0),
{ d 1 (0)> 1 P 1 , d 2 (0)< P 1 P 2 d 1 (0).

Metrics