Abstract

Clinical management of burn injuries depends upon an accurate assessment of the depth of the wound. Current diagnostic methods rely primarily on subjective visual inspection, which can produce variable results. In this study, spectroscopic optical coherence tomography was used to objectively evaluate burn injuries in vivo in a mouse model. Significant spectral differences were observed and correlated with the depth of the injury as determined by histopathology. The relevance of these results to clinical burn management in human tissues is discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography

Jason R. Maher, Volker Jaedicke, Manuel Medina, Howard Levinson, Maria Angelica Selim, William J. Brown, and Adam Wax
Opt. Lett. 39(19) 5594-5597 (2014)

Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha
Biomed. Opt. Express 4(5) 680-695 (2013)

Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI)

Adrien Ponticorvo, David M. Burmeister, Bruce Yang, Bernard Choi, Robert J. Christy, and Anthony J. Durkin
Biomed. Opt. Express 5(10) 3467-3481 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
    [Crossref] [PubMed]
  2. E. Finkelstein, P. S. Corso, and T. R. Miller, The incidence and economic burden of injuries in the United States (Oxford University Press, Oxford; New York, 2006).
  3. D. C. Sainsbury, “Critical evaluation of the clinimetrics of laser Doppler imaging in burn assessment,” J. Wound Care 17(5), 193–200 (2008).
    [Crossref] [PubMed]
  4. R. J. Talbert, S. H. Holan, and J. A. Viator, “Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring,” Phys. Med. Biol. 52(7), 1815–1829 (2007).
    [Crossref] [PubMed]
  5. M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
    [Crossref] [PubMed]
  6. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
    [Crossref] [PubMed]
  7. J. De Boer, S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson, “Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography,” Opt. Express 3(6), 212–218 (1998).
    [Crossref] [PubMed]
  8. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42(25), 5191–5197 (2003).
    [Crossref] [PubMed]
  9. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
    [Crossref]
  10. A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
    [Crossref] [PubMed]
  11. A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
    [Crossref] [PubMed]
  12. J. R. Maher, V. Jaedicke, M. Medina, H. Levinson, M. A. Selim, W. J. Brown, and A. Wax, “In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography,” Opt. Lett. 39(19), 5594–5597 (2014).
    [Crossref] [PubMed]
  13. J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
    [Crossref] [PubMed]
  14. A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
    [Crossref] [PubMed]
  15. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [Crossref] [PubMed]
  16. J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
    [Crossref] [PubMed]
  17. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  18. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
    [Crossref] [PubMed]
  19. F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
    [Crossref] [PubMed]
  20. J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).
    [Crossref] [PubMed]
  21. L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
    [Crossref] [PubMed]
  22. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
    [Crossref] [PubMed]
  23. R. Graaff, A. C. Dassel, M. H. Koelink, F. F. de Mul, J. G. Aarnoudse, and W. G. Zijistra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32(4), 435–447 (1993).
    [Crossref] [PubMed]
  24. T. E. Matthews, M. G. Giacomelli, W. J. Brown, and A. Wax, “Fourier domain multispectral multiple scattering low coherence interferometry,” Appl. Opt. 52(34), 8220–8228 (2013).
    [Crossref] [PubMed]
  25. T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1(2), 105–111 (2014).
    [Crossref]

2015 (1)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

2014 (5)

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
[Crossref] [PubMed]

J. R. Maher, V. Jaedicke, M. Medina, H. Levinson, M. A. Selim, W. J. Brown, and A. Wax, “In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography,” Opt. Lett. 39(19), 5594–5597 (2014).
[Crossref] [PubMed]

T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1(2), 105–111 (2014).
[Crossref]

2013 (2)

2012 (1)

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (2)

A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
[Crossref] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

2008 (1)

D. C. Sainsbury, “Critical evaluation of the clinimetrics of laser Doppler imaging in burn assessment,” J. Wound Care 17(5), 193–200 (2008).
[Crossref] [PubMed]

2007 (1)

R. J. Talbert, S. H. Holan, and J. A. Viator, “Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring,” Phys. Med. Biol. 52(7), 1815–1829 (2007).
[Crossref] [PubMed]

2006 (1)

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

2004 (1)

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

2003 (2)

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42(25), 5191–5197 (2003).
[Crossref] [PubMed]

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

1998 (1)

1993 (1)

1988 (1)

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

1986 (1)

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).
[Crossref] [PubMed]

1984 (1)

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
[Crossref] [PubMed]

Aarnoudse, J. G.

Afromowitz, M. A.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

Bayliss, J.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Brown, W.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Brown, W. J.

Burmeister, D. M.

Callis, J. B.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

Cancio, L. C.

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Canny, J.

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).
[Crossref] [PubMed]

Cardwell, N. L.

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

Cederna, P. S.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Cense, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

Charles, M. W.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
[Crossref] [PubMed]

Chen, Z.

Choi, B.

Christy, R. J.

Coggle, J. E.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
[Crossref] [PubMed]

Cuccia, D. J.

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

Dassel, A. C.

De Boer, J.

de Boer, J. F.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

de Mul, F. F.

Delarosa, S.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

DeSoto, L. A.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

Durkin, A. J.

Eboda, O. N.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Giacomelli, M. G.

Graaff, R.

Graf, R. N.

Hansen, L. S.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
[Crossref] [PubMed]

Heimbach, D. M.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

Hemmila, M.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Holan, S. H.

R. J. Talbert, S. H. Holan, and J. A. Viator, “Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring,” Phys. Med. Biol. 52(7), 1815–1829 (2007).
[Crossref] [PubMed]

Holcomb, J. B.

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Hyle Park, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jaedicke, V.

Jaskille, A. D.

A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
[Crossref] [PubMed]

Jeng, J. C.

A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
[Crossref] [PubMed]

Jiao, S.

Jordan, M. H.

A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
[Crossref] [PubMed]

Kauvar, D. S.

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Kim, J.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

Kim, K. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Koelink, M. H.

Krebsbach, P. H.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Lee, J.

Levi, B.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Levinson, H.

Lydon, M.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Maguluri, G.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Maher, J. R.

Malekafzali, A.

Matthews, T. E.

Mazhar, A.

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

Medina, M.

Nanney, L.

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

Nelson, J.

Norton, M. K.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

Park, B. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Peterson, J. R.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Pierce, M. C.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

Pollins, A. C.

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

Ponticorvo, A.

Poulsen, T.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Renz, E. M.

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Robles, F.

Robles, F. E.

Saggese, S.

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

Sainsbury, D. C.

D. C. Sainsbury, “Critical evaluation of the clinimetrics of laser Doppler imaging in burn assessment,” J. Wound Care 17(5), 193–200 (2008).
[Crossref] [PubMed]

Sandby-Møller, J.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Selim, M. A.

Sharma, S.

Sheridan, R.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Sheridan, R. L.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

Shupp, J. W.

A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
[Crossref] [PubMed]

Srinivas, S.

Stoica, G.

Su, G. L.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Talbert, R. J.

R. J. Talbert, S. H. Holan, and J. A. Viator, “Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring,” Phys. Med. Biol. 52(7), 1815–1829 (2007).
[Crossref] [PubMed]

Viator, J. A.

R. J. Talbert, S. H. Holan, and J. A. Viator, “Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring,” Phys. Med. Biol. 52(7), 1815–1829 (2007).
[Crossref] [PubMed]

Wade, C. E.

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Wang, L. V.

Wang, S. C.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Wax, A.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1(2), 105–111 (2014).
[Crossref]

J. R. Maher, V. Jaedicke, M. Medina, H. Levinson, M. A. Selim, W. J. Brown, and A. Wax, “In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography,” Opt. Lett. 39(19), 5594–5597 (2014).
[Crossref] [PubMed]

T. E. Matthews, M. G. Giacomelli, W. J. Brown, and A. Wax, “Fourier domain multispectral multiple scattering low coherence interferometry,” Appl. Opt. 52(34), 8220–8228 (2013).
[Crossref] [PubMed]

F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
[Crossref] [PubMed]

F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
[Crossref] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

Wells, J.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
[Crossref] [PubMed]

Wolf, S. E.

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Wu, J.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Wulf, H. C.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Xi, C.

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

Yang, B.

Yoon, S. J.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Yu, W.

Zhu, Y.

Zijistra, W. G.

Acta Derm. Venereol. (1)

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Anat. Rec. (1)

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The Influence of the Hair Cycle on the Thickness of Mouse Skin,” Anat. Rec. 210(4), 569–573 (1984).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Burns (1)

D. S. Kauvar, S. E. Wolf, C. E. Wade, L. C. Cancio, E. M. Renz, and J. B. Holcomb, “Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns),” Burns 32(7), 853–857 (2006).
[Crossref] [PubMed]

Burns : journal of the International Society for Burn Injuries (1)

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns : journal of the International Society for Burn Injuries 30(6), 511–517 (2004).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

A. Mazhar, S. Saggese, A. C. Pollins, N. L. Cardwell, L. Nanney, and D. J. Cuccia, “Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019 (2014).
[Crossref] [PubMed]

J. Burn Care Res. (2)

J. Bayliss, S. Delarosa, J. Wu, J. R. Peterson, O. N. Eboda, G. L. Su, M. Hemmila, P. H. Krebsbach, P. S. Cederna, S. C. Wang, C. Xi, and B. Levi, “Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice,” J. Burn Care Res. 35(1), 54–61 (2014).
[Crossref] [PubMed]

A. D. Jaskille, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: Part I. Historical review,” J. Burn Care Res. 30(6), 937–947 (2009).
[Crossref] [PubMed]

J. Wound Care (1)

D. C. Sainsbury, “Critical evaluation of the clinimetrics of laser Doppler imaging in burn assessment,” J. Wound Care 17(5), 193–200 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Med. Biol. (3)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

R. J. Talbert, S. H. Holan, and J. A. Viator, “Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring,” Phys. Med. Biol. 52(7), 1815–1829 (2007).
[Crossref] [PubMed]

Other (1)

E. Finkelstein, P. S. Corso, and T. R. Miller, The incidence and economic burden of injuries in the United States (Oxford University Press, Oxford; New York, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 OCT images of (a) healthy and (b) burned (SPTB) mouse tissue in vivo. Corresponding histopathology is shown in (c) and (d). (c) Healthy tissue layers include the E-epidermis, D-dermis, A-adipose, and M-muscle. (d) Burned tissue shows darkly-stained cell nuclei indicative of inflammation in the superficial layer. (Scale bars 250 μm.)
Fig. 2
Fig. 2 Average spectra acquired from the DPTB (a) and SPTB (b) samples and adjacent healthy tissue. Spectra were downsampled for display purposes and error bars were omitted because the 95% confidence intervals are smaller than the markers. (c) ROC curves generated with the power-law (PL) and logistic regression (LR) classification models. The area under the curve (AUC) and accuracy (calculated at the location of the black dot) of each method are also listed.
Fig. 3
Fig. 3 (a) Percentage of pixels classified as burned using depth-dependent logistic regression. (b) ROC curve associated with this model applied to the data from the surface layers (0-25 μm) of the SPTB [for comparison to Fig. 2(c)] and adjacent healthy tissue. The area under the curve (AUC) and accuracy (calculated at the location of the black dot) are also listed.
Fig. 4
Fig. 4 Color coded OCT images based on (a) original logistic regression (LR) model and (b) depth-dependent LR model. (Scale bars 250μm.)
Fig. 5
Fig. 5 (a) Normalized power-law exponents of all four burn severities versus imaging depth. Error bars represent the standard deviation of the exponent. (b) Correlation between the average normalized power-law exponents measured at a depth of 175 μm and the depth of the injury (zburn) determined by histopathology. Error bars represent the estimated range of injury determined by the histopathologist. Note that the collagen structure in the FTB sample collapsed causing the tissue to flatten and resulting in a large uncertainty in the measured burn depth.

Metrics