Abstract

A novel method of directly observing the effect of temperature rise in water at the vicinity of optical trap center is presented. Our approach relies on changed values of corner frequency of the optical trap that, in turn, is realized from its power spectra. Our two color experiment is a unique combination of a non-heating femtosecond trapping laser at 780 nm, coupled to a femtosecond infrared heating laser at 1560 nm, which precisely controls temperature at focal volume of the trap center using low powers (100-800 µW) at high repetition rate. The geometric ray optics model quantitatively supports our experimental data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two particle tracking and detection in a single Gaussian beam optical trap

P. Praveen, Yogesha, Shruthi S. Iyengar, Sarbari Bhattacharya, and Sharath Ananthamurthy
Appl. Opt. 55(3) 585-594 (2016)

Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing

Poonam Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur
Opt. Express 20(4) 4645-4652 (2012)

Polarization-induced stiffness asymmetry of optical tweezers

Ebrahim Madadi, Akbar Samadi, Mojtaba Cheraghian, and S. Nader S. Reihani
Opt. Lett. 37(17) 3519-3521 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  2. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
    [Crossref] [PubMed]
  3. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
    [Crossref] [PubMed]
  4. I. Bhattacharyya, P. Kumar, and D. Goswami, “Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy,” Chem. Phys. Lett. 598(24), 35–38 (2014).
    [Crossref]
  5. P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
    [Crossref] [PubMed]
  6. G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand: Princeton, 1945).
  7. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near –infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
  8. A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
    [Crossref] [PubMed]
  9. B. Heinrich, “Why have some animals evolved to regulate a high body temperature?” Am. Nat. 111(980), 623–640 (1977).
    [Crossref]
  10. M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
    [Crossref] [PubMed]
  11. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  12. Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
    [Crossref]
  13. B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
    [Crossref] [PubMed]
  14. A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
    [Crossref] [PubMed]
  15. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  16. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  17. D. Mondal and D. Goswami, “Controlling the effect on solvent by resonant excitation in femtosecond optical tweezer,” in Proceedings Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper OtT4E.3.
  18. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
    [Crossref]
  19. Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
  20. K. Kwac and M. Cho, “Two-color pump-probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics,” J. Phys. Chem. A 107(31), 5903–5912 (2003).
    [Crossref]
  21. G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian motion,” Phys. Rev. 36(5), 823–841 (1930).
    [Crossref]
  22. M. C. Wang and G. E. Uhlenbeck, “On the theory of Brownian motion II,” Rev. Mod. Phys. 17(2–3), 323–342 (1945).
    [Crossref]
  23. X. E. Lin, “Laser pulse heating,” in Proceedings of the 1999 Particle Accelerator Conference (IEEE, 1999), pp. 1429–1431.
    [Crossref]
  24. http://www.olympus-ims.com/en/microscope/terms/luminous_flux/ .
  25. T. Al-Shemmeri, Engineering Fluid Mechanics (Ventus Publishing ApS. 2012).
  26. A. Schönle and S. W. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23(5), 325–327 (1998).
    [Crossref] [PubMed]
  27. I.-M. Tolić-Nørrelykkea, K. Berg-Sørensen, and H. Flyvbjerg, “MatLab program for precision calibration of optical tweezers,” Comput. Phys. Commun. 159(3), 225–240 (2004).
    [Crossref]
  28. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
  29. M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
    [Crossref] [PubMed]
  30. CRC Handbook of Chemistry and Physics. 85th ed. (CRC Press, Boca Raton, FL 1991–1992).
  31. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
  32. R. R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41(12), 2318–2327 (2002).
    [Crossref] [PubMed]
  33. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).

2015 (2)

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

2014 (2)

I. Bhattacharyya, P. Kumar, and D. Goswami, “Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy,” Chem. Phys. Lett. 598(24), 35–38 (2014).
[Crossref]

P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
[Crossref] [PubMed]

2009 (1)

2005 (1)

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

2004 (4)

I.-M. Tolić-Nørrelykkea, K. Berg-Sørensen, and H. Flyvbjerg, “MatLab program for precision calibration of optical tweezers,” Comput. Phys. Commun. 159(3), 225–240 (2004).
[Crossref]

Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
[Crossref]

B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

2003 (2)

K. Kwac and M. Cho, “Two-color pump-probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics,” J. Phys. Chem. A 107(31), 5903–5912 (2003).
[Crossref]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).

2002 (1)

1998 (1)

1996 (2)

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near –infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).

1995 (1)

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1992 (1)

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

1989 (2)

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1986 (1)

1977 (1)

B. Heinrich, “Why have some animals evolved to regulate a high body temperature?” Am. Nat. 111(980), 623–640 (1977).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1945 (1)

M. C. Wang and G. E. Uhlenbeck, “On the theory of Brownian motion II,” Rev. Mod. Phys. 17(2–3), 323–342 (1945).
[Crossref]

1930 (1)

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian motion,” Phys. Rev. 36(5), 823–841 (1930).
[Crossref]

Agate, B.

Agayan, R. R.

Ansari, A.

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

Arias-Gonzalez, J. R.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Begasse, M. L.

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

Berg, H. C.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Berg-Sørensen, K.

I.-M. Tolić-Nørrelykkea, K. Berg-Sørensen, and H. Flyvbjerg, “MatLab program for precision calibration of optical tweezers,” Comput. Phys. Commun. 159(3), 225–240 (2004).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Berns, M. W.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near –infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Bhattacharyya, I.

I. Bhattacharyya, P. Kumar, and D. Goswami, “Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy,” Chem. Phys. Lett. 598(24), 35–38 (2014).
[Crossref]

Bicanic, T.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Bjorkholm, J. E.

Blair, D. F.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Brown, C.

Bustamante, C.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

Chai, L.

Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
[Crossref]

Chakraborty, A.

P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
[Crossref] [PubMed]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Cho, M.

K. Kwac and M. Cho, “Two-color pump-probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics,” J. Phys. Chem. A 107(31), 5903–5912 (2003).
[Crossref]

Chu, S.

Cooper, J. M.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

De, A. K.

Del Giudice, F.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Dholakia, K.

Dinda, S.

P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
[Crossref] [PubMed]

Dutta, A.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Eaton, W. A.

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

Flyvbjerg, H.

I.-M. Tolić-Nørrelykkea, K. Berg-Sørensen, and H. Flyvbjerg, “MatLab program for precision calibration of optical tweezers,” Comput. Phys. Commun. 159(3), 225–240 (2004).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Fries, B.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).

R. R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41(12), 2318–2327 (2002).
[Crossref] [PubMed]

Glidle, A.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Goswami, D.

I. Bhattacharyya, P. Kumar, and D. Goswami, “Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy,” Chem. Phys. Lett. 598(24), 35–38 (2014).
[Crossref]

P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
[Crossref] [PubMed]

A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
[Crossref] [PubMed]

Greco, F.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Grill, S. W.

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

Heinrich, B.

B. Heinrich, “Why have some animals evolved to regulate a high body temperature?” Am. Nat. 111(980), 623–640 (1977).
[Crossref]

Hell, S. W.

Henry, E. R.

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

Hofrichter, J.

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

Hyman, A. A.

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

Jain, N.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Jones, C. M.

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

König, K.

Kopelman, R.

Kumar, P.

P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
[Crossref] [PubMed]

I. Bhattacharyya, P. Kumar, and D. Goswami, “Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy,” Chem. Phys. Lett. 598(24), 35–38 (2014).
[Crossref]

Kwac, K.

K. Kwac and M. Cho, “Two-color pump-probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics,” J. Phys. Chem. A 107(31), 5903–5912 (2003).
[Crossref]

Leaver, M.

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

Liang, H.

Lin, X. E.

X. E. Lin, “Laser pulse heating,” in Proceedings of the 1999 Particle Accelerator Conference (IEEE, 1999), pp. 1429–1431.
[Crossref]

Liu, Y.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Maffettone, P. L.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Mao, F.

Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
[Crossref]

Mao, H.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

Netti, P. A.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Ornstein, L. S.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian motion,” Phys. Rev. 36(5), 823–841 (1930).
[Crossref]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).

Robertson, E. J.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Roy, D.

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).

R. R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41(12), 2318–2327 (2002).
[Crossref] [PubMed]

Schönle, A.

Sibbett, W.

Smith, S. B.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

Sonek, G. J.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Tassieri, M.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Tinoco, I.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

Tolic-Nørrelykkea, I.-M.

I.-M. Tolić-Nørrelykkea, K. Berg-Sørensen, and H. Flyvbjerg, “MatLab program for precision calibration of optical tweezers,” Comput. Phys. Commun. 159(3), 225–240 (2004).
[Crossref]

Tromberg, B. J.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near –infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Uhlenbeck, G. E.

M. C. Wang and G. E. Uhlenbeck, “On the theory of Brownian motion II,” Rev. Mod. Phys. 17(2–3), 323–342 (1945).
[Crossref]

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian motion,” Phys. Rev. 36(5), 823–841 (1930).
[Crossref]

Vazquez, F.

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

Wang, M. C.

M. C. Wang and G. E. Uhlenbeck, “On the theory of Brownian motion II,” Rev. Mod. Phys. 17(2–3), 323–342 (1945).
[Crossref]

Wang, Q.

Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
[Crossref]

Wilson, R.

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Xing, Q.

Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
[Crossref]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Am. Nat. (1)

B. Heinrich, “Why have some animals evolved to regulate a high body temperature?” Am. Nat. 111(980), 623–640 (1977).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (2)

Biophys. J. (4)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).

Cell Reports (1)

M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, and A. A. Hyman, “Temperature dependence of cell division timing accounts for a shift in the thermal limits of C. elegans and C. briggsae,” Cell Reports 10(5), 647–653 (2015).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

I. Bhattacharyya, P. Kumar, and D. Goswami, “Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy,” Chem. Phys. Lett. 598(24), 35–38 (2014).
[Crossref]

Comput. Phys. Commun. (1)

I.-M. Tolić-Nørrelykkea, K. Berg-Sørensen, and H. Flyvbjerg, “MatLab program for precision calibration of optical tweezers,” Comput. Phys. Commun. 159(3), 225–240 (2004).
[Crossref]

J. Phys. Chem. A (1)

K. Kwac and M. Cho, “Two-color pump-probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics,” J. Phys. Chem. A 107(31), 5903–5912 (2003).
[Crossref]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36(8), 635–639 (2004).
[Crossref]

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

P. Kumar, S. Dinda, A. Chakraborty, and D. Goswami, “Unusual behavior of thermal lens in alcohols,” Phys. Chem. Chem. Phys. 16(24), 12291–12298 (2014).
[Crossref] [PubMed]

Phys. Rev. (1)

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian motion,” Phys. Rev. 36(5), 823–841 (1930).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. C. Wang and G. E. Uhlenbeck, “On the theory of Brownian motion II,” Rev. Mod. Phys. 17(2–3), 323–342 (1945).
[Crossref]

Rev. Sci. Instrum. (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Sci. Rep. (1)

M. Tassieri, F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, T. Bicanic, and J. M. Cooper, “Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’,” Sci. Rep. 5, 8831 (2015).
[Crossref] [PubMed]

Science (1)

A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, “The role of solvent viscosity in the dynamics of protein conformational changes,” Science 256(5065), 1796–1798 (1992).
[Crossref] [PubMed]

Other (6)

G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand: Princeton, 1945).

D. Mondal and D. Goswami, “Controlling the effect on solvent by resonant excitation in femtosecond optical tweezer,” in Proceedings Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper OtT4E.3.

CRC Handbook of Chemistry and Physics. 85th ed. (CRC Press, Boca Raton, FL 1991–1992).

X. E. Lin, “Laser pulse heating,” in Proceedings of the 1999 Particle Accelerator Conference (IEEE, 1999), pp. 1429–1431.
[Crossref]

http://www.olympus-ims.com/en/microscope/terms/luminous_flux/ .

T. Al-Shemmeri, Engineering Fluid Mechanics (Ventus Publishing ApS. 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of our experimental femtosecond optical tweezers setup. DM: Dichoric mirror; NDFW: Neutral Density Filter Wheels; M: Mirror; L: Lens; O: Objective lens; S: Sample chamber; C: Condenser lens; IRF: Infrared filter; QPD: Quadrant photodiode; CCD: Camera (Charge coupled device).
Fig. 2
Fig. 2 (a) The focus of two colors by a single objective lens when one of higher energy color trapped the fluorophore coated polystyrene bead. (b) The geometry for calculating effective radius at a distance from focus.
Fig. 3
Fig. 3 (a) Our theoretical model predicted plot: temperature versus 1560 nm power (orange circle) and its linear fit (solid line). (b) Our theoretical model predicted plot: viscosity versus 1560 nm power (green circle) and its linear fit (solid line).
Fig. 4
Fig. 4 (a) Experimentally measured power null spectra and (b) power spectrum (Scatter points) and respective Lorenzian fitted data (Solid line) for 1µm fluorophore coated polystyrene bead.
Fig. 5
Fig. 5 (a) Plot of Inverse corner frequency versus power of 1560 nm femtosecond laser with linear fitting (Brown line). (b) Plot of viscosity versus temperature for experimental (black circle) and simulated data (Cyan line).

Tables (1)

Tables Icon

Table 1 Comparison between our theoretical and experimental data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T max T 0 =0.783 F τ p 2 τ p πKρC
F 0 = PulseEnergy π [{( sin 67 0 sin 23 0 ×1.6)+.68}× 10 6 ] 2
T=140+247.8× { log( η(T) 2.414× 10 5 ) } 1
P x (f)= A ( f c 2 + f 2 )

Metrics