Abstract

This paper proposes a novel approach for high-resolution light field microscopy imaging by using a camera array. In this approach, we apply a two-stage relay system for expanding the aperture plane of the microscope into the size of an imaging lens array, and utilize a sensor array for acquiring different sub-apertures images formed by corresponding imaging lenses. By combining the rectified and synchronized images from 5 × 5 viewpoints with our prototype system, we successfully recovered color light field videos for various fast-moving microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second, corresponding to an unprecedented data throughput of 562.5 MB/s for light field microscopy. We also demonstrated the use of the reported platform for different applications, including post-capture refocusing, phase reconstruction, 3D imaging, and optical metrology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time integral imaging system for light field microscopy

Jonghyun Kim, Jae-Hyun Jung, Youngmo Jeong, Keehoon Hong, and Byoungho Lee
Opt. Express 22(9) 10210-10220 (2014)

Light field endoscopy and its parametric description

Jingdan Liu, Daniel Claus, Tingfa Xu, Thorben Keßner, Alois Herkommer, and Wolfgang Osten
Opt. Lett. 42(9) 1804-1807 (2017)

Investigation of mechanosensation in C. elegans using light field calcium imaging

Michael Shaw, Muna Elmi, Vijay Pawar, and Mandayam A. Srinivasan
Biomed. Opt. Express 7(7) 2877-2887 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  2. R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
    [Crossref] [PubMed]
  3. G. Lippmann, “La Photographie Intégrale,” Academie des Sciences 146, 446–451 (1908).
  4. M. Levoy, Z. Zhang, and I. McDowell, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  5. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref] [PubMed]
  6. N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
    [Crossref] [PubMed]
  7. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
    [Crossref] [PubMed]
  8. L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
    [Crossref] [PubMed]
  9. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref]
  10. A. Orth and K. B. Crozier, “Light field moment imaging,” Opt. Lett. 38(15), 2666–2668 (2014).
    [Crossref]
  11. A. Levin, W. T. Freeman, and F. Durand, “Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections,” in Proceedings of the ECCV (Springer, 2008) pp. 88–101.
  12. T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
    [Crossref]
  13. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the ICCP (IEEE, 2009), pp. 1–8.
  14. C. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Computational Optical Sensing and Imaging, Microscopy and Tomography I (2013), CTh3B.
  15. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
    [Crossref]
  16. I. Tosic, S. A. Shroff, and K. Berkner, “Dictionary learning for incoherent sampling with application to plenoptic imaging,” in Proceedings of the ICASSP (IEEE, 2013), pp. 1821–1825.
  17. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
    [Crossref]
  18. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
    [Crossref]
  19. V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proceedings of the CVPR (IEEE, 2004), pp. 2–9.
  20. X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.
  21. J. Wu, X. Lin, Y. Liu, J. Suo, and Q. Dai, “Coded aperture pair for quantitative phase imaging,” Opt. Lett. 39(19), 5776–5779 (2014).
    [Crossref] [PubMed]

2014 (6)

2013 (3)

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

2012 (2)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

2009 (1)

M. Levoy, Z. Zhang, and I. McDowell, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

1996 (1)

1908 (1)

G. Lippmann, “La Photographie Intégrale,” Academie des Sciences 146, 446–451 (1908).

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Andalman, A.

Bando, Y.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

Berkner, K.

I. Tosic, S. A. Shroff, and K. Berkner, “Dictionary learning for incoherent sampling with application to plenoptic imaging,” in Proceedings of the ICASSP (IEEE, 2013), pp. 1821–1825.

Bian, Z.

Bishop, T. E.

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

Boy-den, E. S.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Brady, D. J.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Broxton, M.

Cohen, N.

Crozier, K. B.

Dai, Q.

J. Wu, X. Lin, Y. Liu, J. Suo, and Q. Dai, “Coded aperture pair for quantitative phase imaging,” Opt. Lett. 39(19), 5776–5779 (2014).
[Crossref] [PubMed]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.

Deisseroth, K.

Dong, S.

Dorsch, R. G.

Durand, F.

A. Levin, W. T. Freeman, and F. Durand, “Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections,” in Proceedings of the ECCV (Springer, 2008) pp. 88–101.

Favaro, P.

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Ferreira, C.

Fleischer, J.

C. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Computational Optical Sensing and Imaging, Microscopy and Tomography I (2013), CTh3B.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Freeman, W. T.

A. Levin, W. T. Freeman, and F. Durand, “Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections,” in Proceedings of the ECCV (Springer, 2008) pp. 88–101.

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Georgiev, T.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the ICCP (IEEE, 2009), pp. 1–8.

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Grosenick, L.

Guo, K.

Hoffmann, M.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Horowitz, M.

Horstmeyer, R.

Joshi, N.

V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proceedings of the CVPR (IEEE, 2004), pp. 2–9.

Kato, S.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Levin, A.

A. Levin, W. T. Freeman, and F. Durand, “Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections,” in Proceedings of the ECCV (Springer, 2008) pp. 88–101.

Levoy, M.

N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
[Crossref] [PubMed]

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

M. Levoy, Z. Zhang, and I. McDowell, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proceedings of the CVPR (IEEE, 2004), pp. 2–9.

Lin, X.

J. Wu, X. Lin, Y. Liu, J. Suo, and Q. Dai, “Coded aperture pair for quantitative phase imaging,” Opt. Lett. 39(19), 5776–5779 (2014).
[Crossref] [PubMed]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.

Lippmann, G.

G. Lippmann, “La Photographie Intégrale,” Academie des Sciences 146, 446–451 (1908).

Liu, Y.

Lohmann, A. W.

Lu, C.

C. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Computational Optical Sensing and Imaging, Microscopy and Tomography I (2013), CTh3B.

Lumsdaine, A.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the ICCP (IEEE, 2009), pp. 1–8.

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Marwah, K.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

McDowell, I.

M. Levoy, Z. Zhang, and I. McDowell, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Mendlovic, D.

Muenzel, S.

C. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Computational Optical Sensing and Imaging, Microscopy and Tomography I (2013), CTh3B.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Orth, A.

Ou, X.

Pak, N.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Prevedel, R.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Raskar, R.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.

Schrödel, T.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Shiradkar, R.

Shroff, S. A.

I. Tosic, S. A. Shroff, and K. Berkner, “Dictionary learning for incoherent sampling with application to plenoptic imaging,” in Proceedings of the ICASSP (IEEE, 2013), pp. 1821–1825.

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Suo, J.

J. Wu, X. Lin, Y. Liu, J. Suo, and Q. Dai, “Coded aperture pair for quantitative phase imaging,” Opt. Lett. 39(19), 5776–5779 (2014).
[Crossref] [PubMed]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.

Tian, L.

Tosic, I.

I. Tosic, S. A. Shroff, and K. Berkner, “Dictionary learning for incoherent sampling with application to plenoptic imaging,” in Proceedings of the ICASSP (IEEE, 2013), pp. 1821–1825.

Vaish, V.

V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proceedings of the CVPR (IEEE, 2004), pp. 2–9.

Vaziri, A.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Waller, L.

Wang, J.

Wetzstein, G.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.

Wilburn, B.

V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proceedings of the CVPR (IEEE, 2004), pp. 2–9.

Wu, J.

Xin, H.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Yang, S.

Yoon, Y.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Zalevsky, Z.

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowell, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Zheng, G.

Zimmer, M.

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Academie des Sciences (1)

G. Lippmann, “La Photographie Intégrale,” Academie des Sciences 146, 446–451 (1908).

ACM Trans. Graph. (2)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowell, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nat. 486(7403), 386–389 (2012).
[Crossref]

Nat. Methods (1)

R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boy-den, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Other (6)

V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proceedings of the CVPR (IEEE, 2004), pp. 2–9.

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” in Proceedings of the ICCP (IEEE, 2013), pp. 1–9.

I. Tosic, S. A. Shroff, and K. Berkner, “Dictionary learning for incoherent sampling with application to plenoptic imaging,” in Proceedings of the ICASSP (IEEE, 2013), pp. 1821–1825.

A. Levin, W. T. Freeman, and F. Durand, “Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections,” in Proceedings of the ECCV (Springer, 2008) pp. 88–101.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the ICCP (IEEE, 2009), pp. 1–8.

C. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Computational Optical Sensing and Imaging, Microscopy and Tomography I (2013), CTh3B.

Supplementary Material (7)

NameDescription
» Visualization 1: MOV (4958 KB)      The proposed camera array based light field microscopy (CALM) prototype system.
» Visualization 2: MOV (3935 KB)      Capturing the light field of rose petal for synthetic refocusing and recovering its 3D structure.
» Visualization 3: MOV (2606 KB)      Capturing the light field of integrated circuit board for synthetic refocusing and recovering its 3D structure.
» Visualization 4: MOV (4723 KB)      The applications of light field video of drosophila larva to 3D DPC and phase reconstruction.
» Visualization 5: MOV (2948 KB)      The light field and synthetic refocusing videos of the Caenorhabditis elegans (C. elegans) in the water.
» Visualization 6: MOV (4121 KB)      Quantitative phase reconstruction for microlens array with the captured light field.
» Visualization 7: MOV (3201 KB)      Synthetic aperture and refocusing from the captured light field of cotton.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the proposed CALM system (top) and a photograph showing the prototype system (bottom) ( Visualization 1). We employed 25 cameras to capture the color light field videos of the microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second. The light microscope (Olympus IX73) is configured with a objective lens with 10× magnification, 0.4 numerical aperture and 2.65mm field-of-view.

Fig. 2
Fig. 2

Evaluating resolution and depth of field of the prototype system. The captured light fields have large depth of field (first row), and can achieve an optical sectioning comparable to conventional microscopy (third row) by combining 25 views for refocusing (second row). The axial resolution of our system is 8.8μm and the resolvable group of stripe for each view is 5.6 (line width 8.77μm).

Fig. 3
Fig. 3

Capturing the light field of rose petal (left, Visualization 2) and integrated circuit board (right, Visualization 3) for synthetic refocusing and recovering its 3D structure. The parallaxes of specimens for different views are successfully recorded (first and third column), which can be used for post-capture refocusing (second and fourth column, top) and 3D reconstruction (second and fourth column, bottom).

Fig. 4
Fig. 4

The applications of light field video of drosophila larva to 3D DPC and phase reconstruction ( Visualization 4). With the captured light field video of a living drosophila larva (first row), the 3D differential phase-contrast (DPC) video pair is computed (second and third rows) for recovering the phase video (forth row) which represents sample’s optical path length (e.g. height).

Fig. 5
Fig. 5

The light field and synthetic refocusing videos of the Caenorhabditis elegans (C. elegans) in the water ( Visualization 5). We captured the light field video of large scale C. elegans movement in the water (first row), and the synthetic refocusing video from it reveals the relative spatial locations of different C. elegans along the axial dimension (second row).

Fig. 6
Fig. 6

Quantitative phase reconstruction for microlens array with the captured light field ( Visualization 6). In order to quantitatively evaluate the accuracy of captured light fields by using our approach, we reconstructed the phase of a microlens array (top-right) with its snapshot light field (top-left) and compared the recovered shape with a scanning confocal light microscopy result (bottom).

Fig. 7
Fig. 7

Synthetic aperture and refocusing from the captured light field of cotton ( Visualization 7). The aliasing is occurred in the refocusing and synthetic aperture results in this example due to the large-depth-range and thin-structure of the sample. We used all perspective images of the capture light field (first and second columns) for refocusing (third column) and adopted center 3 × 3 views for synthetic aperture (forth column).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S B P = F . O . V / ( 0.5 d ) 2 ,
δ z = δ x cot ( arcsin ( N . A . ) ) / M ,

Metrics