Abstract

This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman’s rank correlation test (Spearman’s correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue

Débora S. Ferreira, Jelena Mirkovic, Reinoud F. Wolffenbuttel, José H. Correia, Michael S. Feld, and Graça Minas
Biomed. Opt. Express 2(6) 1703-1716 (2011)

a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters

Hidehiko Yoda, Kazuo Shiraishi, Yuji Hiratani, and Osamu Hanaizumi
Appl. Opt. 43(17) 3548-3554 (2004)

Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors

Ben Lariviere, Katherine S. Garman, N. Lynn Ferguson, Deborah A. Fisher, and Nan M. Jokerst
Biomed. Opt. Express 9(3) 1164-1176 (2018)

References

  • View by:
  • |
  • |
  • |

  1. World Health Organization, “Fact sheet Nº297,” (November, 2014), http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on 12 March 2015).
  2. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
    [Crossref] [PubMed]
  3. C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16(20), 16227–16239 (2008).
    [Crossref] [PubMed]
  4. I. Georgakoudi, “The color of cancer,” J. Luminescence 119, 75–83 (2006).
  5. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
    [Crossref] [PubMed]
  6. J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
    [Crossref] [PubMed]
  7. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref] [PubMed]
  8. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40(25), 4633–4646 (2001).
    [Crossref] [PubMed]
  9. D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express 2(6), 1703–1716 (2011).
    [Crossref] [PubMed]
  10. H. A. Macleon, Thin-Film Optical Filters, 3 ed. (Institute of Physics Publishing, 2001).
  11. G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination,” J. Opt. A, Pure Appl. Opt. 8(3), 272–278 (2006).
    [Crossref]
  12. G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
    [Crossref]
  13. D. M. Howard, P. D. I. Charles, and P. Gary, Ion Beam Vacuum Sputtering Apparatus and Method (European Patent EP1212777, 2001).
  14. S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
    [Crossref]
  15. Prazisions glas & optic, “BOROFLOAT® 33 Borosilicate Glass,” http://www.pgo-online.com/intl/katalog/borofloat.html (accessed on 13 March 2015).
  16. J. R. Lakowicz, Principles Fluorescence Spectroscopy 3 ed. (Springer, 2006).
  17. X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
    [Crossref]
  18. S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
    [Crossref]

2011 (1)

2009 (2)

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[Crossref] [PubMed]

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

2008 (3)

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16(20), 16227–16239 (2008).
[Crossref] [PubMed]

2006 (2)

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination,” J. Opt. A, Pure Appl. Opt. 8(3), 272–278 (2006).
[Crossref]

I. Georgakoudi, “The color of cancer,” J. Luminescence 119, 75–83 (2006).

2004 (1)

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

2001 (2)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40(25), 4633–4646 (2001).
[Crossref] [PubMed]

1999 (1)

Augusto, A.

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

Backman, V.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Badizadegan, K.

C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16(20), 16227–16239 (2008).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Bellerive, A.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Bender, J. E.

Brown, J. Q.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Cardoso, S.

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

Carmo, J. P.

S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
[Crossref]

Castanheira, E. M. S.

S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
[Crossref]

Correia, J. H.

D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express 2(6), 1703–1716 (2011).
[Crossref] [PubMed]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination,” J. Opt. A, Pure Appl. Opt. 8(3), 272–278 (2006).
[Crossref]

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

Correia, R. G.

S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
[Crossref]

Dai, X.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Dasari, R. R.

Elackattu, A.

Feld, M. S.

Ferreira, D. S.

Ferreira, R.

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

Fitzmaurice, M.

Freitas, P. P.

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

Fu, H. L.

Galindo, L.

Georgakoudi, I.

I. Georgakoudi, “The color of cancer,” J. Luminescence 119, 75–83 (2006).

M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40(25), 4633–4646 (2001).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Grillone, G.

Hargrove, C.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Kuech, T. F.

Lau, C.

Lo, J. Y.

Macedo, R. J.

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

Manoharan, R.

Martins, J. S.

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

McGee, S.

Mifflin, C.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Minas, G.

D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express 2(6), 1703–1716 (2011).
[Crossref] [PubMed]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination,” J. Opt. A, Pure Appl. Opt. 8(3), 272–278 (2006).
[Crossref]

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
[Crossref]

Mirkovic, J.

Müller, M. G.

M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40(25), 4633–4646 (2001).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

O’Donoghue, G.

Palmer, G. M.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[Crossref] [PubMed]

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Perelman, L. T.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Pimenta, S.

S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
[Crossref]

Ramanujam, N.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[Crossref] [PubMed]

Ribeiro, J. C.

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

Rollin, E.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Sinclair, D.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Stier, E.

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Thomas, G. A.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Vishwanath, K.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Wisniowski, P.

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

Wolffenbuttel, R. F.

D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express 2(6), 1703–1716 (2011).
[Crossref] [PubMed]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination,” J. Opt. A, Pure Appl. Opt. 8(3), 272–278 (2006).
[Crossref]

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

Wu, J.

Yu, B.

Yu, C.-C.

Zhang, F.

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40(25), 4633–4646 (2001).
[Crossref] [PubMed]

Zonios, G.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Curr. Opin. Biotechnol. (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Gastroenterology (1)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Cardoso, R. J. Macedo, R. Ferreira, A. Augusto, P. Wisniowski, and P. P. Freitas, “Ion beam assisted deposition of MgO barriers for magnetic tunnel junctions,” J. Appl. Phys. 103(7), 07A905 (2008).
[Crossref]

J. Luminescence (1)

I. Georgakoudi, “The color of cancer,” J. Luminescence 119, 75–83 (2006).

J. Opt. A, Pure Appl. Opt. (1)

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination,” J. Opt. A, Pure Appl. Opt. 8(3), 272–278 (2006).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

X. Dai, E. Rollin, A. Bellerive, C. Hargrove, D. Sinclair, C. Mifflin, and F. Zhang, “Wavelength shifters for water cherenkov detectors,” Nucl. Instrum. Methods Phys. Res. A 589(2), 290–295 (2008).
[Crossref]

Opt. Express (2)

Sens. Actuator A-Phys. (1)

G. Minas, J. S. Martins, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot Optical-Channels for Biological Fluids Analysis,” Sens. Actuator A-Phys. 115(2-3), 362–367 (2004).
[Crossref]

Other (6)

D. M. Howard, P. D. I. Charles, and P. Gary, Ion Beam Vacuum Sputtering Apparatus and Method (European Patent EP1212777, 2001).

S. Pimenta, J. P. Carmo, R. G. Correia, E. M. S. Castanheira, and G. Minas, “Characterization of silicon photodiodes for diffuse reflectance signal extraction,” in Proceedings of IEEE 4th Portuguese Meeting on Bioengineering (IEEE, 2015); doi:.
[Crossref]

Prazisions glas & optic, “BOROFLOAT® 33 Borosilicate Glass,” http://www.pgo-online.com/intl/katalog/borofloat.html (accessed on 13 March 2015).

J. R. Lakowicz, Principles Fluorescence Spectroscopy 3 ed. (Springer, 2006).

World Health Organization, “Fact sheet Nº297,” (November, 2014), http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on 12 March 2015).

H. A. Macleon, Thin-Film Optical Filters, 3 ed. (Institute of Physics Publishing, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Fabry-Perot resonator structure with dielectric mirrors: H – layer with high refractive index; L – layer with low refractive index. d r and d are the thicknesses of the resonance cavity and of the mirrors films, respectively. Their values are obtained using Eq. (1) and Eq. (2), respectively.
Fig. 2
Fig. 2 Simulated transmittance spectra for the UV/VIS optical filters (A), VIS optical filters (B) and VIS/IR optical filters (C), (TP: filter maximum transmittance peak wavelength).
Fig. 3
Fig. 3 Scheme of the fully automated deposition system (Nordiko 3000) with a 6-target configuration, allowing sequential deposition of the films. The film thickness uniformity is ± 2% over 150 mm diameter area.
Fig. 4
Fig. 4 Comparison between the refractive indices of the Sopra Database and the ones obtained experimentally, for different thicknesses (d) of SiO2 (A), TiO2 (B) and MgO (C). The presented thicknesses are measured by profilometry.
Fig. 5
Fig. 5 Simulated transmittance spectra for an optical filter initially designed for 510 nm maximum transmittance peak. The two curves are obtained using the refractive indices provided by the Sopra database (n from Sopra database) and the experimental refractive indices (Experimental n), maintaining the layers structure thicknesses and materials.
Fig. 6
Fig. 6 Simulated transmittance spectra for the UV/VIS optical filters (A), VIS optical filters (B) and VIS/IR optical filters (C) after the design adjustment (TP: filter maximum transmittance peak wavelength).
Fig. 7
Fig. 7 Photographs of some of the fabricated optical filters obtained with a microscope.
Fig. 8
Fig. 8 Measured transmittance spectra for the UV/VIS fabricated optical filters (A), VIS fabricated optical filters (B) and VIS/IR fabricated optical filters (C), (TP: filter maximum transmittance peak wavelength).
Fig. 9
Fig. 9 SEM image showing the cross-section of the 458 nm Fabry–Perot optical filter with 11 layers: TiO2 and SiO2 layer thicknesses for the two parallel mirrors are equal to 36.7 and 71.05 nm, respectively, while the resonance cavity (RC) thickness is equal to 183.6 nm; magnification 200,000 times. The measured total layers thickness is 688 nm.
Fig. 10
Fig. 10 Surface 3-D map of the 458 nm Fabry–Perot optical filter.
Fig. 11
Fig. 11 Experimental spectra measured with commercial equipment (blue lines) and reconstructed spectra (green lines) obtained using the discrete intensity values extracted with the 16 fabricated optical filters (red points). (A) - Diffuse reflectance from phantoms a, b and c (see Table 6). (B) - Fluorescence from phantoms d, e and f (see Table 6).

Tables (6)

Tables Icon

Table 1 Layer thicknesses of the optical filters in the UV/VIS, VIS and VIS/IR regions, with the combinations MgO/TiO2 and SiO2/TiO2 (RC: Resonant Cavity).

Tables Icon

Table 2 Layer thicknesses of the optical filters in the UV/VIS, VIS and VIS/IR regions, with the combinations MgO/TiO2 and SiO2/TiO2, after the design adjustment.

Tables Icon

Table 3 Comparison of the maximum transmittance peak obtained for the simulated and fabricated optical filters.

Tables Icon

Table 4 Comparison between the fabricated optical filters and some of the commercially available. Data includes filters within the 340nm-750nm range.

Tables Icon

Table 5 Comparison between the optical filter theoretical thickness with the experimental one obtained by profilometry and by SEM.

Tables Icon

Table 6 Phantoms used for the spectroscopic measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λq=2n d r
λ=4nd

Metrics