Abstract

Microscope-integrated intraoperative OCT (iOCT) enables imaging of tissue cross-sections concurrent with ophthalmic surgical maneuvers. However, limited acquisition rates and complex three-dimensional visualization methods preclude real-time surgical guidance using iOCT. We present an automated stereo vision surgical instrument tracking system integrated with a prototype iOCT system. We demonstrate, for the first time, automatically tracked video-rate cross-sectional iOCT imaging of instrument-tissue interactions during ophthalmic surgical maneuvers. The iOCT scan-field is automatically centered on the surgical instrument tip, ensuring continuous visualization of instrument positions relative to the underlying tissue over a 2500 mm2 field with sub-millimeter positional resolution and <1° angular resolution. Automated instrument tracking has the added advantage of providing feedback on surgical dynamics during precision tissue manipulations because it makes it possible to use only two cross-sectional iOCT images, aligned parallel and perpendicular to the surgical instrument, which also reduces both system complexity and data throughput requirements. Our current implementation is suitable for anterior segment surgery. Further system modifications are proposed for applications in posterior segment surgery. Finally, the instrument tracking system described is modular and system agnostic, making it compatible with different commercial and research OCT and surgical microscopy systems and surgical instrumentations. These advances address critical barriers to the development of iOCT-guided surgical maneuvers and may also be translatable to applications in microsurgery outside of ophthalmology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers

Yuankai K. Tao, Sunil K. Srivastava, and Justis P. Ehlers
Biomed. Opt. Express 5(6) 1877-1885 (2014)

Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps

Haoran Yu, Jin-Hui Shen, Rohan J. Shah, Nabil Simaan, and Karen M. Joos
Biomed. Opt. Express 6(2) 457-472 (2015)

Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

Liangbo Shen, Oscar Carrasco-Zevallos, Brenton Keller, Christian Viehland, Gar Waterman, Paul S. Hahn, Anthony N. Kuo, Cynthia A. Toth, and Joseph A. Izatt
Biomed. Opt. Express 7(5) 1711-1726 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Joos and J. H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
    [Crossref] [PubMed]
  2. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
    [Crossref] [PubMed]
  3. C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
    [Crossref] [PubMed]
  4. M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 12, 108–115 (2009).
    [Crossref]
  5. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
    [Crossref] [PubMed]
  6. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
    [Crossref] [PubMed]
  7. G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
    [Crossref] [PubMed]
  8. L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
    [Crossref] [PubMed]
  9. J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
    [Crossref] [PubMed]
  10. N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
    [Crossref] [PubMed]
  11. R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
    [Crossref] [PubMed]
  12. L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
    [PubMed]
  13. A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
    [Crossref] [PubMed]
  14. P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
    [Crossref] [PubMed]
  15. Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
    [Crossref] [PubMed]
  16. S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
    [Crossref] [PubMed]
  17. P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
    [Crossref] [PubMed]
  18. B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).
  19. J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).
  20. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
  21. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
    [Crossref] [PubMed]
  22. A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).
  23. J. Probst, P. Koch, and G. Hüttmann, “Real-time 3D rendering of optical coherence tomography volumetric data,” Proc. SPIE- OSA Biomedical Optics, paper 73720Q (2009).
  24. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).
  25. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in SPIE Photonics West(2011), pp. 78890F.
  26. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
    [Crossref] [PubMed]
  27. J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
    [Crossref] [PubMed]
  28. D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
    [Crossref]
  29. Y. Li, C. Chen, X. Huang, and J. Huang, “Instrument Tracking via Online Learning in Retinal Microsurgery,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe, eds. (Springer International Publishing, 2014), pp. 464–471.
  30. R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
    [Crossref] [PubMed]
  31. R. Sznitman, K. Ali, R. Richa, R. Taylor, G. Hager, and P. Fua, “Data-Driven Visual Tracking in Retinal Microsurgery,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, N. Ayache, H. Delingette, P. Golland, and K. Mori, eds. (Springer Berlin Heidelberg, 2012), pp. 568–575.
  32. R. Richa, M. Balicki, E. Meisner, R. Sznitman, R. Taylor, and G. Hager, “Visual Tracking of Surgical Tools for Proximity Detection in Retinal Surgery,” in Information Processing in Computer-Assisted Interventions, R. Taylor, and G.-Z. Yang, eds. (Springer Berlin Heidelberg, 2011), pp. 55–66.
  33. E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
    [Crossref] [PubMed]
  34. J. B. West and C. R. Maurer., “Designing optically tracked instruments for image-guided surgery,” IEEE Trans. Med. Imaging 23(5), 533–545 (2004).
    [Crossref] [PubMed]
  35. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
    [Crossref] [PubMed]
  36. D. Grest, T. Petersen, and V. Kruger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications,” Lect. Notes Comput. Sci. 5575, 706–715 (2009).
    [Crossref]
  37. D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using coplanar feature points,” Comput. Vis. Image Underst. 63(3), 495–511 (1996).
    [Crossref]
  38. O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
    [Crossref] [PubMed]
  39. J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
    [Crossref] [PubMed]
  40. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal 22(11), 1330–1334 (2000).
    [Crossref]
  41. J.-Y. Bouguet, “MATLAB Camera Clibration Toolbox,” (2003), http://www.vision.caltech.edu/bouguetj/calib_doc/index.html .
  42. E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision (Prentice Hall Englewood Cliffs, 1998).

2015 (3)

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref] [PubMed]

2014 (5)

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
[Crossref] [PubMed]

2013 (7)

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

K. M. Joos and J. H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
[Crossref] [PubMed]

2012 (2)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
[Crossref] [PubMed]

2011 (4)

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[Crossref] [PubMed]

D. Grest, T. Petersen, and V. Kruger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications,” Lect. Notes Comput. Sci. 5575, 706–715 (2009).
[Crossref]

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).

2008 (2)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

2005 (2)

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

2004 (1)

J. B. West and C. R. Maurer., “Designing optically tracked instruments for image-guided surgery,” IEEE Trans. Med. Imaging 23(5), 533–545 (2004).
[Crossref] [PubMed]

2003 (1)

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

2001 (1)

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

2000 (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal 22(11), 1330–1334 (2000).
[Crossref]

1996 (1)

D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using coplanar feature points,” Comput. Vis. Image Underst. 63(3), 495–511 (1996).
[Crossref]

Akl, S. G.

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Amir-Asgari, S.

N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
[Crossref] [PubMed]

Ang, M.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

Angunawela, R. I.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

Binder, S.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Birngruber, R.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Blatter, C.

Burschka, D.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

Carrasco-Zevallos, O.

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

Corso, J. J.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Cursiefen, C.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Davis, L. S.

D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using coplanar feature points,” Comput. Vis. Image Underst. 63(3), 495–511 (1996).
[Crossref]

De Benito-Llopis, L.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

DeMenthon, D. F.

D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using coplanar feature points,” Comput. Vis. Image Underst. 63(3), 495–511 (1996).
[Crossref]

Dewan, M.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Draxinger, W.

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

Drexler, W.

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref] [PubMed]

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

Ehlers, J. P.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

Ellis, R. E.

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Falkner-Radler, C. I.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Farsiu, S.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

Fechtig, D. J.

Feiler, D.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Fekete, O.

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

Fercher, A. F.

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

Fichtinger, G.

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Findl, O.

N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
[Crossref] [PubMed]

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

Fujimoto, J. G.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

Fuller, A. R.

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

Geerling, G.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Gehlbach, P. L.

Gehlsen, U.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Glittenberg, C.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Gorgun, E.

R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
[Crossref] [PubMed]

Grajciar, B.

Grest, D.

D. Grest, T. Petersen, and V. Kruger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications,” Lect. Notes Comput. Sci. 5575, 706–715 (2009).
[Crossref]

Hager, G. D.

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Hahn, P.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Hamann, B.

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

Han, S.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Hasser, C.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Hauger, C.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Hayashi, A.

A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
[Crossref] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

Heindl, L. M.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Heinzl, H.

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

Hirnschall, N.

N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
[Crossref] [PubMed]

Hitzenberger, C. K.

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

Hoerauf, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Hoffman, B.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Huber, R.

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

Humayun, M.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Hüttmann, G.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Izatt, J. A.

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

Jedynak, B.

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

Joos, K. M.

Kaiser, P. K.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Kang, J. U.

Keller, B.

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

Klein, T.

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

Kolb, J. P.

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

Krug, M.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Kruger, V.

D. Grest, T. Petersen, and V. Kruger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications,” Lect. Notes Comput. Sci. 5575, 706–715 (2009).
[Crossref]

Kucumen, R. B.

R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
[Crossref] [PubMed]

Kuo, A. N.

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

Lankenau, E.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Laqua, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Larkin, D.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Lau, W.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Le Blanc, C.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Lee, L. B.

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

Leitgeb, R. A.

Li, M.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Lin, H.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Lugez, E.

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Maedel, S.

N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
[Crossref] [PubMed]

Maldonado, R.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

Maldonado, R. S.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Marayong, P.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Matz, H.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Maurer, C. R.

J. B. West and C. R. Maurer., “Designing optically tracked instruments for image-guided surgery,” IEEE Trans. Med. Imaging 23(5), 533–545 (2004).
[Crossref] [PubMed]

McDowell, E. J.

Mehta, J. S.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

Menapace, R.

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

Migacz, J.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Miyakoshi, A.

A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
[Crossref] [PubMed]

Müller, M.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Nankivil, D.

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

Németh, J.

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

Noonan, A. I.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

O’Connell, R.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Oberkampf, D.

D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using coplanar feature points,” Comput. Vis. Image Underst. 63(3), 495–511 (1996).
[Crossref]

Oelckers, S.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Ohr, M. P.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Otsuka, M.

A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
[Crossref] [PubMed]

Ozaki, H.

A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
[Crossref] [PubMed]

Park, D. Y.

Park, S. J.

Pesztenlehrer, N.

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

Petersen, T.

D. Grest, T. Petersen, and V. Kruger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications,” Lect. Notes Comput. Sci. 5575, 706–715 (2009).
[Crossref]

Pichora, D. R.

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Potsaid, B.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

Ramey, N.

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Ren, J.

Richa, R.

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

Rollins, A. M.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Sadjadi, H.

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Sarunic, M. V.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Schmoll, T.

Shen, J. H.

Song, C.

Srivastava, S. K.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

Steven, P.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Sznitman, R.

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

Tan, D. T. H.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

Tao, Y. K.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

Taylor, R. H.

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

Toth, C. A.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[Crossref] [PubMed]

Utine, C. A.

R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
[Crossref] [PubMed]

Velten, K.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Werkmeister, R. M.

Werner, J. S.

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

West, J. B.

J. B. West and C. R. Maurer., “Designing optically tracked instruments for image-guided surgery,” IEEE Trans. Med. Imaging 23(5), 533–545 (2004).
[Crossref] [PubMed]

Wieser, W.

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

Winter, C.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Wu, J.

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[Crossref] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Yang, C.

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[Crossref] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Yenerel, N. M.

R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
[Crossref] [PubMed]

Zawadzki, R. J.

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

Zhang, Z. Y.

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal 22(11), 1330–1334 (2000).
[Crossref]

Am. J. Ophthalmol. (1)

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. H. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior Lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341 (2014).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Comput. Vis. Image Underst. (1)

D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using coplanar feature points,” Comput. Vis. Image Underst. 63(3), 495–511 (1996).
[Crossref]

IEEE Trans. Med. Imaging (1)

J. B. West and C. R. Maurer., “Designing optically tracked instruments for image-guided surgery,” IEEE Trans. Med. Imaging 23(5), 533–545 (2004).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal 22(11), 1330–1334 (2000).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. Sznitman, R. Richa, R. H. Taylor, B. Jedynak, and G. D. Hager, “Unified detection and tracking of instruments during retinal microsurgery,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1263–1273 (2013).
[Crossref] [PubMed]

Int. J. CARS (1)

E. Lugez, H. Sadjadi, D. R. Pichora, R. E. Ellis, S. G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. CARS 10(3), 253–262 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref] [PubMed]

B. Keller, O. Carrasco-Zevallos, D. Nankivil, A. N. Kuo, and J. A. Izatt, “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Vis. Sci. 55, 1631 (2014).

N. Hirnschall, S. Amir-Asgari, S. Maedel, and O. Findl, “Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements,” Invest. Ophthalmol. Vis. Sci. 54(8), 5196–5203 (2013).
[Crossref] [PubMed]

ISRN Ophthalmol. (1)

A. Miyakoshi, H. Ozaki, M. Otsuka, and A. Hayashi, “Efficacy of Intraoperative Anterior Segment Optical Coherence Tomography during Descemet’s Stripping Automated Endothelial Keratoplasty,” ISRN Ophthalmol. 2014, 562062 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

O. Findl, W. Drexler, R. Menapace, H. Heinzl, C. K. Hitzenberger, and A. F. Fercher, “Improved prediction of intraocular lens power using partial coherence interferometry,” J. Cataract Refract. Surg. 27(6), 861–867 (2001).
[Crossref] [PubMed]

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

JAMA Ophthalmol. (1)

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).
[Crossref] [PubMed]

Lect. Notes Comput. Sci. (1)

D. Grest, T. Petersen, and V. Kruger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications,” Lect. Notes Comput. Sci. 5575, 706–715 (2009).
[Crossref]

Ophthalmic Surg. Lasers Imaging (3)

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(4Suppl), S85–S94 (2011).
[Crossref] [PubMed]

R. B. Kucumen, E. Gorgun, N. M. Yenerel, and C. A. Utine, “Intraoperative use of AS-OCT during intrastromal corneal ring segment implantation,” Ophthalmic Surg. Lasers Imaging 43(6Suppl), S109–S116 (2012).
[Crossref] [PubMed]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic Surg. Lasers Imaging 42, e71–e74 (2011).
[PubMed]

Opt. Lett. (2)

PLoS One (1)

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Proc. SPIE (4)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view,” Proc. SPIE 6844, 68440C (2008).

J. P. Kolb, T. Klein, W. Wieser, W. Draxinger, and R. Huber, “Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s,” Proc. SPIE 9312, 931202 (2015).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).

A. R. Fuller, R. J. Zawadzki, B. Hamann, and J. S. Werner, “Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods,” Proc. SPIE 7163, 716312 (2009).

Retina (3)

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref] [PubMed]

Robot. Auton. Syst. (1)

D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman, D. Larkin, and C. Hasser, “Navigating inner space: 3-D assistance for minimally invasive surgery,” Robot. Auton. Syst. 52(1), 5–26 (2005).
[Crossref]

Other (8)

Y. Li, C. Chen, X. Huang, and J. Huang, “Instrument Tracking via Online Learning in Retinal Microsurgery,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe, eds. (Springer International Publishing, 2014), pp. 464–471.

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in SPIE Photonics West(2011), pp. 78890F.

R. Sznitman, K. Ali, R. Richa, R. Taylor, G. Hager, and P. Fua, “Data-Driven Visual Tracking in Retinal Microsurgery,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, N. Ayache, H. Delingette, P. Golland, and K. Mori, eds. (Springer Berlin Heidelberg, 2012), pp. 568–575.

R. Richa, M. Balicki, E. Meisner, R. Sznitman, R. Taylor, and G. Hager, “Visual Tracking of Surgical Tools for Proximity Detection in Retinal Surgery,” in Information Processing in Computer-Assisted Interventions, R. Taylor, and G.-Z. Yang, eds. (Springer Berlin Heidelberg, 2011), pp. 55–66.

J.-Y. Bouguet, “MATLAB Camera Clibration Toolbox,” (2003), http://www.vision.caltech.edu/bouguetj/calib_doc/index.html .

E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision (Prentice Hall Englewood Cliffs, 1998).

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 12, 108–115 (2009).
[Crossref]

J. Probst, P. Koch, and G. Hüttmann, “Real-time 3D rendering of optical coherence tomography volumetric data,” Proc. SPIE- OSA Biomedical Optics, paper 73720Q (2009).

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (1171 KB)      Green laser tracking pencil tip
» Visualization 2: MP4 (1488 KB)      iOCT tracking with silicone soft-tip
» Visualization 3: MP4 (4662 KB)      iOCT tracking with blunt cannula
» Visualization 4: MP4 (4463 KB)      iOCT tracking with needle-tip

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Orientation resolution criterion. The solid black outline is a schematic representation of the en face view of an instrument tip with radius r. The red and blue lines represent orthogonal iOCT scan beams with length 2L. For a maximum iOCT scan length of 10 mm and a 40 G instrument tip, δθ is ~0.9°. x-, y-, and z-axes denote B-scan, C-scan, and A-scan directions, respectively.
Fig. 2
Fig. 2 Simulated iOCT cross-sectional images relative to instrument orientation tracking error. (a) En face view of the instrument, (b) magnified view of the instrument tip, and (c) simulated iOCT cross-sectional image along the instrument axis (red line) with no orientation error. (d)-(f) Small orientation error resulting in a slightly rotated iOCT field relative to the instrument, but the entire instrument cross-section remains visible on iOCT. (h)-(j) Large orientation error resulting in a partial instrument cross-section on iOCT. Red and blue lines denote orthogonal iOCT cross-sectional scans and x-, y-, z-axes denote B-scan, C-scan, and A-scan directions, respectively.
Fig. 3
Fig. 3 Bionocular stereo vision setup. (a) CMOS area sensor. (b) Stereo vision triangulation with two cameras with optical centers, OL,R; baseline, b; focal length, f; and imaging distance, z. mL.R are projections of M at the camera image plane. c) Stereo vision noise may result in non-coplaner calculated three-dimensional rays. Here, the midpoint between MR and ML is used to approximate the three-dimensional intersect, M.
Fig. 4
Fig. 4 Active stereo vision tracking markers. (a) Solidworks model and photo of the instrument with LED active marker collars attached. The instrument body included a Luer lock termination and was used with three detachable tips: 27 G blunt canula, 27 G needle tip, and 20 G silicone soft-tip. (b) Shematic showing computed orientation error (εo) based on LED separation distance, L, and triangulation position error (εp).
Fig. 5
Fig. 5 Schematic of stereo vision tracked iOCT. Drive signals from iOCT were sampled for 1 s and stored in circular buffers. Output buffers were continuously read from circular buffers at ~30 Hz. The output samples were rotated and translated by the computed instrument pose from the stereo vision system by applying voltage and field rotation offsets. Finally, tracked scanner trajectories were output to each corresponding galvanometer scanner.
Fig. 6
Fig. 6 Convergence of coefficients of rotation angles between camera and world coordinates. (a) Calculated rotation angles and (b) error of the calculated angles relative to final converged values.
Fig. 7
Fig. 7 x- and y-axis triangulation error of a single IR LED. The traveled trajectory along the x-axis over 6 z-plans at 4 mm increments (a) before and (b) after coordinate transformation. The flat regions correspond to motion in y-axis only. Similar curves were obtained for y-axis (not shown). Triangulation error in (c) x-axis (mean = 0.001 mm, SD = 0.058 mm) and (d) y-axis (mean = 0.005 mm, SD = 0.055 mm).
Fig. 8
Fig. 8 Orientation error measured by manual rotation of a surgical instrument instrument through 180° clockwise and counterclockwise. Mean error = 0.3°, SD = 0.23°.
Fig. 9
Fig. 9 Freehand motion error. Pencil writing (grey) and calculated working-tip coordinates (red) for (a) raw and (b) moving average filtered tracking results. Error plots show relative error between actual and computed positions for different tracking accuracies. Dotted black lines show resolution at 10% error.
Fig. 10
Fig. 10 Freehand motion tracking. (a) Green laser tracking instrument tip at different (b) positions and (c) orientations. Scale bar: 10 mm (Visualization 1).
Fig. 11
Fig. 11 20 G silicone soft-tip on enucleated porcine eye. (a)-(c) Corneal compressions and scraping with the tip visible in both cross-sections. (d) Tip out of field in both cross-sections due to bending of the non-rigid instrument tip. Video scale bar: 5 mm, OCT scale bar: 0.5 mm (Visualization 2).
Fig. 12
Fig. 12 27 G blunt canula on enucealated porcine eye. (a) Scraping corneal surface and (b) near edge of a corneal wound. (c) Instrument out of field in one cross-section due to tracking error. (d) Canula initiates corneal dissection at wound site. Video scale bar: 5 mm, OCT scale bar: 0.5 mm (Visualization 3).
Fig. 13
Fig. 13 27 G needle tip on enucealated porcine eye. (a) Needle approaching cornea and (b) out of field both cross-sections due to tracking error. (c) Needle starts perforating the cornea and (d) needle visualized inside the cornea after perforation. Video scale bar: 5 mm, OCT scale bar: 0.5 mm (Visualization 4).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[R|t]=( r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 | t x t y t z ),
A=( S x (tanθ) S y x o 0 S y y o 0 0 1 ).
Δz = z 2 bf .
m L =( x L y L 1 ), m R =( x R y R 1 ).
a m L +b N c m R = T N = m L × m R .
M L = O L +a m L M R = O R +c m R M= 1 2 ( M L + M R ).
bufsiz e output = sampling rate update rate
( X ^ i Y ^ i )=R( X i Y i )+( D C x D C y ).
R=( cosθ sinθ sinθ cosθ ).
R x (θ)=( 1 0 0 0 cosθ sinθ 0 sinθ cosθ ), R y (θ)=( cosθ 0 sinθ 0 1 0 sinθ 0 cosθ ), R z (θ)=( cosθ sinθ 0 sinθ cosθ 0 0 0 1 ) R= R x × R y × R z .
R=( 0.9726 0.0325 0.3039 0.0635 1.0235 0.0540 0.3331 0.1006  0.9551 ).

Metrics