Abstract

Here we present the results of a study concerning the effect of temperature on cell mechanical properties. Two different optofluidic microchips with external temperature control are used to investigate the temperature-induced changes of highly metastatic human melanoma cells (A375MC2) in the range of ~0 – 35 °C. By means of an integrated optical stretcher, we observe that cells’ optical deformability is strongly enhanced by increasing cell and buffer-fluid temperature. This finding is supported by the results obtained from a second device, which probes the cells’ ability to be squeezed through a constriction. Measured data demonstrate a marked dependence of cell mechanical properties on temperature, thus highlighting the importance of including a proper temperature-control system in the experimental apparatus.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher

Andrew E. Ekpenyong, Carolyn L. Posey, Joy L. Chaput, Anya K. Burkart, Meg M. Marquardt, Timothy J. Smith, and Michael G. Nichols
Appl. Opt. 48(32) 6344-6354 (2009)

Calcium imaging in the optical stretcher

Markus Gyger, Daniel Rose, Roland Stange, Tobias Kießling, Mareike Zink, Ben Fabry, and Josef A. Käs
Opt. Express 19(20) 19212-19222 (2011)

Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers

Anna Chiara De Luca, Giovanni Volpe, Anna Morales Drets, Maria Isabel Geli, Giuseppe Pesce, Giulia Rusciano, Antonio Sasso, and Dmitri Petrov
Opt. Express 15(13) 7922-7932 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
    [Crossref] [PubMed]
  2. F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
    [Crossref] [PubMed]
  3. W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
    [Crossref] [PubMed]
  4. C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
    [Crossref] [PubMed]
  5. A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
    [Crossref]
  6. C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
    [Crossref] [PubMed]
  7. T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
    [Crossref] [PubMed]
  8. T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
    [Crossref] [PubMed]
  9. M. R. K. Mofrad and R. D. Kamm, eds., “Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics,” Cambridge University Press, (2011).
  10. T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
    [Crossref]
  11. C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
    [Crossref] [PubMed]
  12. R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
    [Crossref]
  13. N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
    [Crossref] [PubMed]
  14. B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High Throughput Rheological Measurements with an Optical Stretcher,” in Methods in Cell Biology, W. Yu-Li and E. D. Dennis, eds., Academic Press 83, 397–423 (2007)
  15. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  16. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  17. F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
    [Crossref] [PubMed]
  18. R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
    [Crossref] [PubMed]
  19. L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
    [Crossref] [PubMed]
  20. F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
    [Crossref] [PubMed]
  21. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
    [Crossref] [PubMed]
  22. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
    [Crossref] [PubMed]
  23. H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, “Molecular Cell Biology,” New York: W. H. Freeman (2000).
  24. L. U. Cassimeris, P. Wadsworth, and E. D. Salmon, “Dynamics of microtubule depolymerization in monocytes,” J. Cell Biol. 102(6), 2023–2032 (1986).
    [Crossref] [PubMed]
  25. E. M. Faller and D. L. Brown, “Modulation of microtubule dynamics by the microtubule-associated protein 1a,” J. Neurosci. Res. 87(5), 1080–1089 (2009).
    [Crossref] [PubMed]
  26. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
    [Crossref] [PubMed]
  27. B. Yap and R. D. Kamm, “Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties,” J. Appl. Physiol. 98(5), 1930–1939 (2005).
    [Crossref] [PubMed]

2015 (3)

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

2014 (1)

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

2013 (1)

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

2012 (4)

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

2011 (1)

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

2010 (1)

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

2009 (2)

E. M. Faller and D. L. Brown, “Modulation of microtubule dynamics by the microtubule-associated protein 1a,” J. Neurosci. Res. 87(5), 1080–1089 (2009).
[Crossref] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

2007 (3)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[Crossref] [PubMed]

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

2006 (1)

L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
[Crossref] [PubMed]

2005 (3)

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

B. Yap and R. D. Kamm, “Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties,” J. Appl. Physiol. 98(5), 1930–1939 (2005).
[Crossref] [PubMed]

2003 (1)

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[Crossref] [PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

1994 (1)

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

1986 (1)

L. U. Cassimeris, P. Wadsworth, and E. D. Salmon, “Dynamics of microtubule depolymerization in monocytes,” J. Cell Biol. 102(6), 2023–2032 (1986).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Begum, S.

L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
[Crossref] [PubMed]

Beil, M.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Bellini, N.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

Bianchi, E.

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Blatt, T.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Borisy, G. G.

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[Crossref] [PubMed]

Bosch, F. H.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Boyde, L.

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

Bragheri, F.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

Brown, D. L.

E. M. Faller and D. L. Brown, “Modulation of microtubule dynamics by the microtubule-associated protein 1a,” J. Neurosci. Res. 87(5), 1080–1089 (2009).
[Crossref] [PubMed]

Bruel, A.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Cassimeris, L. U.

L. U. Cassimeris, P. Wadsworth, and E. D. Salmon, “Dynamics of microtubule depolymerization in monocytes,” J. Cell Biol. 102(6), 2023–2032 (1986).
[Crossref] [PubMed]

Cerullo, G.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

Chan, C. J.

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

Chang, J.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Chiodi, I.

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

Choi, D. S.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Cristiani, I.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Di Tano, M.

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Ebert, S.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Faigle, C.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

Faller, E. M.

E. M. Faller and D. L. Brown, “Modulation of microtubule dynamics by the microtubule-associated protein 1a,” J. Neurosci. Res. 87(5), 1080–1089 (2009).
[Crossref] [PubMed]

Fritsch, A.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Fritsch, A. W.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Guck, J.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Gyger, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Halie, M. R.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Hearn, J. D.

L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
[Crossref] [PubMed]

Höckel, M.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Homewood, P.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

Huls, T.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Hynes, R. O.

L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
[Crossref] [PubMed]

Iwamoto, T.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Jaspers, S.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Kai, K.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Kamm, R. D.

B. Yap and R. D. Kamm, “Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties,” J. Appl. Physiol. 98(5), 1930–1939 (2005).
[Crossref] [PubMed]

Käs, J.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Käs, J. A.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Kiessling, T.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Kießling, T. R.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Kueper, T.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Landis, M. D.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Lautenschläger, F.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Lincoln, B.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Malsen, A.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Martín-Badosa, E.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

Martinez Vazquez, R.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Maselli, V.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

Minzioni, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mondello, C.

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Muhr, G.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Müller, K.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

Nava, G.

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Nguyen, Y. H.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Nnetu, K. D.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Osellame, R.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

Paiè, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Paschke, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Pollard, T. D.

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[Crossref] [PubMed]

Qin, L.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Ramponi, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

Roerdinkholder-Stoelwinder, B.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rönicke, S.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Rose, D.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Salbreux, G.

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

Salmon, E. D.

L. U. Cassimeris, P. Wadsworth, and E. D. Salmon, “Dynamics of microtubule depolymerization in monocytes,” J. Cell Biol. 102(6), 2023–2032 (1986).
[Crossref] [PubMed]

Sauer, F.

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

Schinkinger, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schipper, L.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Schulze, C.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Stange, R.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Suresh, S.

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[Crossref] [PubMed]

Travis, K.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

Ueno, N. T.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Vazquez, R. M.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

Veglione, M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

Wadsworth, P.

L. U. Cassimeris, P. Wadsworth, and E. D. Salmon, “Dynamics of microtubule depolymerization in monocytes,” J. Cell Biol. 102(6), 2023–2032 (1986).
[Crossref] [PubMed]

Wenck, H.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Werre, J. M.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Wetzel, F.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Whyte, G.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3(10), 2658–2668 (2012).
[Crossref] [PubMed]

Wichers, G.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Willekens, F. L. A.

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Wittern, K.-P.

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Wong, H.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Wottawah, F.

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Xu, L.

L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
[Crossref] [PubMed]

Yang, T.

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Yap, B.

B. Yap and R. D. Kamm, “Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties,” J. Appl. Physiol. 98(5), 1930–1939 (2005).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

Zink, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

Acta Biomater. (2)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[Crossref] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater. 1(3), 263–271 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Cell (1)

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[Crossref] [PubMed]

Clin. Plast. Surg. (1)

C. Schulze, F. Wetzel, T. Kueper, A. Malsen, G. Muhr, S. Jaspers, T. Blatt, K.-P. Wittern, H. Wenck, and J. A. Käs, “Stiffening of Human Skin Fibroblasts with Age,” Clin. Plast. Surg. 39(1), 9–20 (2012).
[Crossref] [PubMed]

Eur. Biophys. J. (1)

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Eur. J. Haematol. (1)

F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52(1), 35–41 (1994).
[Crossref] [PubMed]

Integr Biol (Camb) (1)

R. Martinez Vazquez, G. Nava, M. Veglione, T. Yang, F. Bragheri, P. Minzioni, E. Bianchi, M. Di Tano, I. Chiodi, R. Osellame, C. Mondello, and I. Cristiani, “An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells,” Integr Biol (Camb) 7(4), 477–484 (2015).
[Crossref] [PubMed]

Interface Focus (1)

C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, and J. Guck, “Impact of heating on passive and active biomechanics of suspended cells,” Interface Focus 4(2), 20130069 (2014).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

B. Yap and R. D. Kamm, “Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties,” J. Appl. Physiol. 98(5), 1930–1939 (2005).
[Crossref] [PubMed]

J. Cell Biol. (1)

L. U. Cassimeris, P. Wadsworth, and E. D. Salmon, “Dynamics of microtubule depolymerization in monocytes,” J. Cell Biol. 102(6), 2023–2032 (1986).
[Crossref] [PubMed]

J. Neurosci. Res. (1)

E. M. Faller and D. L. Brown, “Modulation of microtubule dynamics by the microtubule-associated protein 1a,” J. Neurosci. Res. 87(5), 1080–1089 (2009).
[Crossref] [PubMed]

Lab Chip (3)

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15(5), 1267–1275 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6(10), 730–732 (2010).
[Crossref]

New J. Phys. (1)

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells-impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (3)

L. Xu, S. Begum, J. D. Hearn, and R. O. Hynes, “GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9023–9028 (2006).
[Crossref] [PubMed]

W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, “Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18707–18712 (2012).
[Crossref] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Other (3)

H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, “Molecular Cell Biology,” New York: W. H. Freeman (2000).

M. R. K. Mofrad and R. D. Kamm, eds., “Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics,” Cambridge University Press, (2011).

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High Throughput Rheological Measurements with an Optical Stretcher,” in Methods in Cell Biology, W. Yu-Li and E. D. Dennis, eds., Academic Press 83, 397–423 (2007)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) image of the optical stretcher chip; b) microchannel with two facing waveguides (not completely in focus). Yellow dashed line indicates the trapping/stretching region; c) and d) represent the same cell trapped and stretched respectively. Green contours are cell borders identified by the recognition algorithm.
Fig. 2
Fig. 2 microscope image of constriction chip under bright field, locally enlarged constriction part has dimension of 8 × 12 μm2. Scare bar: 100μm
Fig. 3
Fig. 3 A375 MC2 cell size distribution a) and x/y ratio b) at different temperatures. Measurements were performed while trapping the cell by using the OS. Box width is not related to temperature variations.
Fig. 4
Fig. 4 Optical deformation a) and passing pressure b) of A375 MC2 at different temperatures

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RMS= ( x orig 2 + y orig 2 ) 2
Var(%)=( x max y min y orig x orig 1 )100Corr

Metrics