Abstract

The dual-pulse nonlinear photoacoustic technique is a recently developed technology based on temperature dependence of the Grüneisen parameter and involves consecutive excitations of biological tissue using two laser pulses with a short time delay. Here we review the principle of the technique and give a discussion about its technical aspects, including selection and combination of excitation laser wavelengths, determination of laser fluence, estimation of thermal relaxation function and probability of photoablation or cavitation. Comparisons between the dual-pulse technique and conventional photoacoustics as well as thermal photoacoustics are also presented. These investigations are supported by experimental results and will give a practical reference and guide for further developments of the technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver

Chao Tian, Zhixing Xie, Mario L. Fabiilli, and Xueding Wang
Opt. Lett. 40(10) 2253-2256 (2015)

Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen
Opt. Express 22(21) 26365-26374 (2014)

Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions

Elena Petrova, Sergey Ermilov, Richard Su, Vyacheslav Nadvoretskiy, André Conjusteau, and Alexander Oraevsky
Opt. Express 21(21) 25077-25090 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  2. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [Crossref] [PubMed]
  3. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  4. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [Crossref] [PubMed]
  5. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  6. Z. Xie, C. Tian, S.-L. Chen, T. Ling, C. Zhang, L. J. Guo, P. L. Carson, and X. Wang, “3D high resolution photoacoustic imaging based on pure optical photoacoustic microscopy with microring resonator,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 894314.
  7. L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2007).
  8. S. Pramuditya, “Water Thermodynamic Properties” (2011), retrieved 09/13, 2014, http://syeilendrapramuditya.wordpress.com/2011/08/20/water-thermodynamic-properties/ .
  9. V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
    [Crossref]
  10. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic Press, 1990).
  11. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
    [Crossref] [PubMed]
  12. J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
  13. Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
    [Crossref] [PubMed]
  14. D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
    [Crossref] [PubMed]
  15. J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
    [Crossref] [PubMed]
  16. S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).
  17. L. Wang, C. Zhang, and L. V. Wang, “Grueneisen relaxation photoacoustic microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
    [Crossref] [PubMed]
  18. P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
    [Crossref] [PubMed]
  19. C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
    [Crossref]
  20. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
    [Crossref]
  21. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  22. S. Prahl, R. L. P. v. Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Optical Properties Spectra”, retrieved 09/13, 2014, http://omlc.org/spectra/ .
  23. S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15, 040501 (2010).
  24. B. Cox, “Introduction to laser-tissue interactions,” PHAS 4886, 1–61 (2007).
  25. P. Beard, “Biomedical photoacoustic imaging,” Interface focus, rsfs20110028 (2011).
  26. R. S. Dingus and R. J. Scammon, “Grüneisen-stress-induced ablation of biological tissue,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, (International Society for Optics and Photonics, 1991), 45–54.
  27. G. Paltauf, E. Reichel, and H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed-sampling photography,” in OE/LASE'92, (International Society for Optics and Photonics, 1992), 343–352.
  28. G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104(2), 890–897 (1998).
    [Crossref]
  29. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Academic Press, 2004).
  30. G. Paltauf and H. Schmidt-Kloiber, “Microcavity dynamics during laser-induced spallation of liquids and gels,” Appl. Phys., A Mater. Sci. Process. 62(4), 303–311 (1996).
    [Crossref]
  31. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
    [Crossref]
  32. S. L. Jacques, G. Gofstein, and R. S. Dingus, “Laser-flash photography of laser-induced spallation in liquid media,” in OE/LASE'92, (International Society for Optics and Photonics, 1992), 284–294.

2015 (2)

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref]

2014 (2)

D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
[Crossref] [PubMed]

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen relaxation photoacoustic microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

2013 (3)

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

2010 (1)

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15, 040501 (2010).

2009 (4)

S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[Crossref] [PubMed]

2008 (1)

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

2007 (1)

B. Cox, “Introduction to laser-tissue interactions,” PHAS 4886, 1–61 (2007).

2006 (2)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

2005 (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

1998 (1)

G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104(2), 890–897 (1998).
[Crossref]

1996 (1)

G. Paltauf and H. Schmidt-Kloiber, “Microcavity dynamics during laser-induced spallation of liquids and gels,” Appl. Phys., A Mater. Sci. Process. 62(4), 303–311 (1996).
[Crossref]

1995 (1)

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

1972 (1)

V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

Aglyamov, S.

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Ashkenazi, S.

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15, 040501 (2010).

Chen, Y. S.

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

Chen, Y.-S.

D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
[Crossref] [PubMed]

Cox, B.

B. Cox, “Introduction to laser-tissue interactions,” PHAS 4886, 1–61 (2007).

Del Grosso, V. A.

V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

Emelianov, S.

D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

Emelianov, S. Y.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Esenaliev, R. O.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Fabiilli, M. L.

Frenz, M.

G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104(2), 890–897 (1998).
[Crossref]

Frey, W.

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

Galitovskaya, E. N.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Jee, S.-H.

S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).

Jiao, S.

Johnston, K.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Ke, H.

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Lai, P.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Larson, T.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

Li, P.-C.

S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).

Litovsky, S.

D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
[Crossref] [PubMed]

Ma, L.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Mader, C. W.

V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

Mercer, K. E.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Milner, T.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Paltauf, G.

G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104(2), 890–897 (1998).
[Crossref]

G. Paltauf and H. Schmidt-Kloiber, “Microcavity dynamics during laser-induced spallation of liquids and gels,” Appl. Phys., A Mater. Sci. Process. 62(4), 303–311 (1996).
[Crossref]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Park, S.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Puliafito, C. A.

Schmidt-Kloiber, H.

G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104(2), 890–897 (1998).
[Crossref]

G. Paltauf and H. Schmidt-Kloiber, “Microcavity dynamics during laser-induced spallation of liquids and gels,” Appl. Phys., A Mater. Sci. Process. 62(4), 303–311 (1996).
[Crossref]

Shah, J.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Smeltzer, M. S.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Sokolov, K.

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Tai, S.

Tay, J. W.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Tian, C.

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Walker, C.

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

Wang, L.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen relaxation photoacoustic microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

Wang, L. V.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen relaxation photoacoustic microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
[Crossref] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wang, S.-H.

S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).

Wang, X.

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wei, C.-W.

S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Xie, Z.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yao, J.

Yeager, D.

D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
[Crossref] [PubMed]

Zhang, C.

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen relaxation photoacoustic microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

Zhang, H. F.

Zharov, V. P.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Zhou, Y.

Appl. Phys., A Mater. Sci. Process. (1)

G. Paltauf and H. Schmidt-Kloiber, “Microcavity dynamics during laser-induced spallation of liquids and gels,” Appl. Phys., A Mater. Sci. Process. 62(4), 303–311 (1996).
[Crossref]

Biophys. J. (1)

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (2)

V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104(2), 890–897 (1998).
[Crossref]

J. Appl. Phys. (1)

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser-ablation for aqueous-media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

J. Biomed. Opt. (2)

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15, 040501 (2010).

J. Shah, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, S. Park, S. Aglyamov, and T. Larson, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).

J. Biophotonics (1)

Y. S. Chen, W. Frey, C. Walker, S. Aglyamov, and S. Emelianov, “Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping,” J. Biophotonics 6(6-7), 534–542 (2013).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys. 38(15), 2633–2639 (2005).
[Crossref]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

PHAS (1)

B. Cox, “Introduction to laser-tissue interactions,” PHAS 4886, 1–61 (2007).

Photons Plus Ultrasound: Imaging and Sensing (1)

S.-H. Wang, C.-W. Wei, S.-H. Jee, and P.-C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Photons Plus Ultrasound: Imaging and Sensing 2009, 7177 (2009).

Phys. Med. Biol. (2)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Wang, C. Zhang, and L. V. Wang, “Grueneisen relaxation photoacoustic microscopy,” Phys. Rev. Lett. 113(17), 174301 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Theranostics (1)

D. Yeager, Y.-S. Chen, S. Litovsky, and S. Emelianov, “Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study,” Theranostics 4(1), 36–46 (2014).
[Crossref] [PubMed]

Other (10)

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic Press, 1990).

Z. Xie, C. Tian, S.-L. Chen, T. Ling, C. Zhang, L. J. Guo, P. L. Carson, and X. Wang, “3D high resolution photoacoustic imaging based on pure optical photoacoustic microscopy with microring resonator,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 894314.

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2007).

S. Pramuditya, “Water Thermodynamic Properties” (2011), retrieved 09/13, 2014, http://syeilendrapramuditya.wordpress.com/2011/08/20/water-thermodynamic-properties/ .

S. Prahl, R. L. P. v. Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Optical Properties Spectra”, retrieved 09/13, 2014, http://omlc.org/spectra/ .

T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Academic Press, 2004).

P. Beard, “Biomedical photoacoustic imaging,” Interface focus, rsfs20110028 (2011).

R. S. Dingus and R. J. Scammon, “Grüneisen-stress-induced ablation of biological tissue,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, (International Society for Optics and Photonics, 1991), 45–54.

G. Paltauf, E. Reichel, and H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed-sampling photography,” in OE/LASE'92, (International Society for Optics and Photonics, 1992), 343–352.

S. L. Jacques, G. Gofstein, and R. S. Dingus, “Laser-flash photography of laser-induced spallation in liquid media,” in OE/LASE'92, (International Society for Optics and Photonics, 1992), 284–294.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of the acoustic transducer Σ and the photoacoustic source S.

Fig. 2
Fig. 2

Setup (a) and principle [(b) and (c)] of the dual-pulse nonlinear photoacoustic technique. DM: dichroic mirror; MMF: multi-mode fiber.

Fig. 3
Fig. 3

Experimental measurement of the nonlinear effect of red ink. (a) Photoacoustic signals of the detecting laser without and with heating (see inset for detail); (b) Normalized amplitude of the detecting photoacoustic signal without and with heating in several consecutive measurements.

Fig. 4
Fig. 4

Optical absorption spectra of water, red ink, oxygenated (HbO2) and deoxygenated (Hb) blood and lipid [22]. The spectrum of red ink was measured using spectrophotometer (SpectraMax Plus 384, Molecular Devices, LLC).

Fig. 5
Fig. 5

Relations between the nonlinear effect and the fluences of the heating laser (a) and the detecting laser (b).

Fig. 6
Fig. 6

Measured and fitted thermal relaxation function.

Fig. 7
Fig. 7

Different laser-tissue interaction mechanisms in logarithmic scale (both axes) [24].

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

p 0 =Γ μ a Φ,
Γ=β v s 2 / C p ,
p 0 =Γ μ a ( λ 1 ) Φ 1 (x,y,z; λ 1 ; t 1 ),
V 1 =η G(ξ,ζ)( S f(x,y,z;ξ,ζ) Γ 0 μ a ( λ 1 ) Φ 1 (x,y,z; λ 1 ; t 1 )dxdydz ) dξdζ =η Γ 0 μ a ( λ 1 ) G(ξ,ζ)( S f(x,y,z;ξ,ζ) Φ 1 (x,y,z; λ 1 ; t 1 )dxdydz ) dξdζ =η Γ 0 μ a ( λ 1 )F( Φ 1 ),
ΔT= μ a Φ ρ C v  ,
Γ( T 0 +ΔT;Δt)= Γ 0 + Γ ΔTτ(Δt),
V 2 =η Γ 0 μ a ( λ 2 )F( Φ 2 )+η{ [ Γ μ a ( λ 1 ) ρ C v τ(Δt) ] μ a ( λ 2 ) }F( Φ 1 Φ 2 ),
V 2 =η Γ 0 μ a ( λ 2 )F( Φ 2 ).
Δ V 2 = V 2 V 2 =η{ [ Γ μ a ( λ 1 ) ρ C v τ(Δt) ] μ a ( λ 2 ) }F( Φ 1 Φ 2 ).
α= Δ V 2 V 2 = Γ Γ 0 μ a ( λ 1 ) ρ C v τ(Δt) F( Φ 1 Φ 2 ) F( Φ 2 ) .
α= ( β β 0 +2 v s v s0 C p C p0 ) μ a ( λ 1 ) ρ C v Tissueparameters τ(Δt) Relaxation function F( Φ 1 Φ 2 ) F( Φ 2 ) Laserfluence ,
F( Φ 1 Φ 2 ) F( Φ 2 ) = G(ξ,ζ)( S f(x,y,z;ξ,ζ) Φ 1 (x,y,z; λ 1 ; t 1 ) Φ 2 (x,y,z; λ 2 ; t 2 )dxdydz )dξdζ G(ξ,ζ)( S f(x,y,z;ξ,ζ) Φ 2 (x,y,z; λ 2 ; t 2 )dxdydz )dξdζ .
τ th = d 2 / α th ,
τ(Δt)=exp(7.9× 10 3 Δt).
p 0 =Γ μ a Φ 1 =0.20×240 cm 1 ×500mJ cm 2 =24MPa,
p neg = p 0 /2=12MPa.
MI= p neg f c =8.
Φ 1 max = 2 p neg Γ μ a = 2×2.9× 10 6 Pa 0.2×240 cm 1 =121mJ cm 2 .
Δ T max = μ a Φ 1 max ρ C v = 240 cm 1 ×121mJ cm 2 1g cm 3 ×4J g -1 K -1  =7.3K.

Metrics