Abstract

A spectral imaging system was developed to study the development of breast cancer xenografts in a murine mammary window chamber model. The instrument is configured to work with either a laser to excite fluorescence or a broadband light source for diffuse reflectance imaging. Two applications were demonstrated. First, spectral imaging of fluorescence signals was demonstrated with a GFP-breast cancer tumor and fluorescein injection. Second, based on the principles of broadband reflectance spectroscopy, the instrument was used to monitor dynamic changes of tissue absorbance to yield tissue oxygenation maps at different time points during tumor progression.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model

Rachel Schafer and Arthur F. Gmitro
Biomed. Opt. Express 6(2) 639-650 (2015)

Near-simultaneous quantification of glucose uptake, mitochondrial membrane potential, and vascular parameters in murine flank tumors using quantitative diffuse reflectance and fluorescence spectroscopy

Caigang Zhu, Hannah L. Martin, Brian T. Crouch, Amy F. Martinez, Martin Li, Gregory M. Palmer, Mark W. Dewhirst, and Nimmi Ramanujam
Biomed. Opt. Express 9(7) 3399-3412 (2018)

In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors

Jennifer A. Lee, Nikolett M. Biel, Raymond T. Kozikowski, Dietmar W. Siemann, and Brian S. Sorg
Biomed. Opt. Express 5(6) 1965-1979 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer 5(10), 796–806 (2005).
    [Crossref] [PubMed]
  2. M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
    [Crossref] [PubMed]
  3. M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
    [Crossref] [PubMed]
  4. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
    [Crossref] [PubMed]
  5. R. G. O’Neil, L. Wu, and N. Mullani, “Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells,” Mol. Imaging Biol. 7(6), 388–392 (2005).
    [Crossref] [PubMed]
  6. S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
    [Crossref] [PubMed]
  7. M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
    [Crossref] [PubMed]
  8. D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
    [Crossref] [PubMed]
  9. R. Schafer, H. M. Leung, and A. F. Gmitro, “Multi-modality imaging of a murine mammary window chamber for breast cancer research,” Biotechniques 57(1), 45–50 (2014).
    [PubMed]
  10. D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
    [Crossref] [PubMed]
  11. R. Schafer and A. F. Gmitro, “Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model,” Biomed. Opt. Express 6(2), 639–650 (2015).
    [Crossref] [PubMed]
  12. R. M. Hoffman, “Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic,” Invest. New Drugs 17(4), 343–360 (1999).
    [Crossref] [PubMed]
  13. H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
    [Crossref] [PubMed]
  14. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1), 44–57 (2002).
    [Crossref]
  15. M. J. Doughty, “pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited,” Ophthalmic Physiol. Opt. 30(2), 167–174 (2010).
    [Crossref] [PubMed]
  16. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).
  17. R. van Veen and H. Sterenborg, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time-and spatially resolved diffuse reflectance and transmission spectroscopy,” in Biomed. Topical Meeting, (2004).
    [Crossref]
  18. S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

R. Schafer, H. M. Leung, and A. F. Gmitro, “Multi-modality imaging of a murine mammary window chamber for breast cancer research,” Biotechniques 57(1), 45–50 (2014).
[PubMed]

2011 (2)

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

2010 (1)

M. J. Doughty, “pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited,” Ophthalmic Physiol. Opt. 30(2), 167–174 (2010).
[Crossref] [PubMed]

2009 (1)

M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
[Crossref] [PubMed]

2008 (3)

M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref] [PubMed]

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

2005 (2)

R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer 5(10), 796–806 (2005).
[Crossref] [PubMed]

R. G. O’Neil, L. Wu, and N. Mullani, “Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells,” Mol. Imaging Biol. 7(6), 388–392 (2005).
[Crossref] [PubMed]

2003 (1)

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

2002 (2)

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1), 44–57 (2002).
[Crossref]

2000 (1)

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

1999 (1)

R. M. Hoffman, “Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic,” Invest. New Drugs 17(4), 343–360 (1999).
[Crossref] [PubMed]

Anasagasti, L.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Bouvet, M.

M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
[Crossref] [PubMed]

Brown, J. Q.

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

Bruchez, M. P.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Butler, J. A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Cao, Y.

M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref] [PubMed]

Cerussi, A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Chen, W. P.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Condeelis, J.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Delgado, J. A.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Dewhirst, M. W.

M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref] [PubMed]

Doughty, M. J.

M. J. Doughty, “pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited,” Ophthalmic Physiol. Opt. 30(2), 167–174 (2010).
[Crossref] [PubMed]

Durkin, A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Ge, N.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Gligorijevic, B.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Gmitro, A. F.

R. Schafer and A. F. Gmitro, “Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model,” Biomed. Opt. Express 6(2), 639–650 (2015).
[Crossref] [PubMed]

R. Schafer, H. M. Leung, and A. F. Gmitro, “Multi-modality imaging of a murine mammary window chamber for breast cancer research,” Biotechniques 57(1), 45–50 (2014).
[PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Haley, K. N.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Hoffman, R. M.

M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
[Crossref] [PubMed]

R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer 5(10), 796–806 (2005).
[Crossref] [PubMed]

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

R. M. Hoffman, “Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic,” Invest. New Drugs 17(4), 343–360 (1999).
[Crossref] [PubMed]

Hsiang, D.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Jiang, P.

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

Kedrin, D.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Keshava, N.

N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1), 44–57 (2002).
[Crossref]

Larson, J. P.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Leung, H. M.

R. Schafer, H. M. Leung, and A. F. Gmitro, “Multi-modality imaging of a murine mammary window chamber for breast cancer research,” Biotechniques 57(1), 45–50 (2014).
[PubMed]

Li, L.

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

Liu, H.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Liu, J.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Makhlouf, H.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

McLaren, C.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Mehta, R.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Millon, S. R.

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

Moeller, B.

M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref] [PubMed]

Moossa, A. R.

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

Mullani, N.

R. G. O’Neil, L. Wu, and N. Mullani, “Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells,” Mol. Imaging Biol. 7(6), 388–392 (2005).
[Crossref] [PubMed]

Mustard, J. F.

N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1), 44–57 (2002).
[Crossref]

O’Neil, R. G.

R. G. O’Neil, L. Wu, and N. Mullani, “Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells,” Mol. Imaging Biol. 7(6), 388–392 (2005).
[Crossref] [PubMed]

Ostrander, J. H.

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

Peale, F.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Penman, S.

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

Pérez, A.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Raheja, A.

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

Ramanujam, N.

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

Reynoso, J.

M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
[Crossref] [PubMed]

Roblyer, D.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Rouse, A. R.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Schafer, R.

R. Schafer and A. F. Gmitro, “Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model,” Biomed. Opt. Express 6(2), 639–650 (2015).
[Crossref] [PubMed]

R. Schafer, H. M. Leung, and A. F. Gmitro, “Multi-modality imaging of a murine mammary window chamber for breast cancer research,” Biotechniques 57(1), 45–50 (2014).
[PubMed]

Seewaldt, V. L.

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

Segall, J. E.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Stolik, S.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Tanamai, W.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Tanbakuchi, A. A.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Treadway, J. A.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Tromberg, B.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Udovich, J. A.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Ueda, S.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

van Rheenen, J.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Verkhusha, V. V.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Wu, L.

R. G. O’Neil, L. Wu, and N. Mullani, “Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells,” Mol. Imaging Biol. 7(6), 388–392 (2005).
[Crossref] [PubMed]

Wu, X.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Wyckoff, J.

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Yang, M.

M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
[Crossref] [PubMed]

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biotechniques (1)

R. Schafer, H. M. Leung, and A. F. Gmitro, “Multi-modality imaging of a murine mammary window chamber for breast cancer research,” Biotechniques 57(1), 45–50 (2014).
[PubMed]

Breast Cancer Res. Treat. (1)

S. R. Millon, J. H. Ostrander, J. Q. Brown, A. Raheja, V. L. Seewaldt, and N. Ramanujam, “Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines,” Breast Cancer Res. Treat. 126(1), 55–62 (2011).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1), 44–57 (2002).
[Crossref]

Invest. New Drugs (1)

R. M. Hoffman, “Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic,” Invest. New Drugs 17(4), 343–360 (1999).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

J. Cell. Biochem. (1)

M. Yang, J. Reynoso, M. Bouvet, and R. M. Hoffman, “A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment,” J. Cell. Biochem. 106(2), 279–284 (2009).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Mol. Imaging Biol. (1)

R. G. O’Neil, L. Wu, and N. Mullani, “Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells,” Mol. Imaging Biol. 7(6), 388–392 (2005).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21(1), 41–46 (2002).
[Crossref] [PubMed]

Nat. Methods (1)

D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, and J. van Rheenen, “Intravital imaging of metastatic behavior through a mammary imaging window,” Nat. Methods 5(12), 1019–1021 (2008).
[Crossref] [PubMed]

Nat. Rev. Cancer (2)

M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref] [PubMed]

R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer 5(10), 796–806 (2005).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

M. J. Doughty, “pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited,” Ophthalmic Physiol. Opt. 30(2), 167–174 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Yang, L. Li, P. Jiang, A. R. Moossa, S. Penman, and R. M. Hoffman, “Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells,” Proc. Natl. Acad. Sci. U.S.A. 100(24), 14259–14262 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. USA 108(35), 14626–14631 (2011).
[Crossref] [PubMed]

Other (2)

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

R. van Veen and H. Sterenborg, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time-and spatially resolved diffuse reflectance and transmission spectroscopy,” in Biomed. Topical Meeting, (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Image of a mouse in a customized holder used during imaging experiments. The stabilizing bar helps to suppress motion artifacts due to respiration.
Fig. 2
Fig. 2 Different configurations of the imaging system. Imaging can be accomplished with either (a) a laser for fluorescence imaging or (b) a broadband light source for reflectance imaging. (c) For spectral imaging, light is deflected by a scan mirror in a fixed off-axis position onto a prism where it is dispersed and imaged onto a CCD. (d) Live imaging of fluorescence or white light reflectance can be done by rotating the detection scan mirror to avoid the prism and scanning it synchronously with the object scan mirror.
Fig. 3
Fig. 3 Spectral calibration and resolution. (a) Adjustment curve derived by comparing measured reflectance curve with the calibrated data supplied by Labsphere. (b) Spectral resolution of the system as a function of wavelength.
Fig. 4
Fig. 4 Hyperspectral fluorescence imaging results. (a) A fluorescence image of GFP. (b) A single dispersion image of a line through the center of MWC. (c) A fluorescence image after fluorescein injection. (d) Normalized emission spectra of fluorescein and GFP. (e-f) Maps of CGFP and Cfl derived from spectral unmixing. (g-i) Plots show the measured data, fitted curves and decomposed spectral components at three locations marked p1-p3 in (e) and (f).
Fig. 5
Fig. 5 Hyperspectral reflectance imaging to measure SaO2 in the MWC model. (a-c) are GFP images at days 8, 11 and 13 after cell inoculation. Aberrant vasculature and necrosis are marked as “v” and “n” respectively. (d-f) SaO2 maps of the MWC at corresponding days. (g-i) Normalized maps of k2/k1 coefficient (see Eq. (2)), which are related to fat content. (j) A picture of the MWC taken at day 11 which shows the marked necrotic region being darker than surrounding tissue. (k-l) Plots of measured and fitted absorbance curves at two different locations marked with crosshairs in (e).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S refl (λ)= C GFP S GFP (λ)+ C fl S fl (λ)+C
A fit (λ)= k 1 [ Sa O 2 ϵ oxy ( λ )+( 1Sa O 2 ) ϵ deoxy ( λ ) ]+ k 2 ϵ fat ( λ )+ k 3 ,

Metrics