Abstract

Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow

Tanja Dragojević, Joseph L. Hollmann, Davide Tamborini, Davide Portaluppi, Mauro Buttafava, Joseph P. Culver, Federica Villa, and Turgut Durduran
Biomed. Opt. Express 9(1) 322-334 (2018)

Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation

S. M. Shams Kazmi, Satyajit Balial, and Andrew K. Dunn
Biomed. Opt. Express 5(7) 2157-2171 (2014)

Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging

Ashwin B. Parthasarathy, S. M. Shams Kazmi, and Andrew K. Dunn
Biomed. Opt. Express 1(1) 246-259 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
    [Crossref]
  2. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Progress Phys. 1, 1–43 (2010).
  3. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
    [Crossref]
  4. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 1–12 (2010).
    [Crossref]
  5. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
    [Crossref] [PubMed]
  6. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
    [Crossref] [PubMed]
  7. A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
    [Crossref]
  8. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5, 2157–2171 (2014).
    [Crossref] [PubMed]
  9. J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [Crossref] [PubMed]
  10. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
    [Crossref]
  11. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (lasca),” J. Biomed. Opt. 4, 164–175 (1999).
    [Crossref] [PubMed]
  12. D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
    [Crossref]
  13. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
    [Crossref]
  14. F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
    [Crossref]
  15. S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” ProQuest (2008).
  16. C. P. Valdes, H. M. Varma, A. K. Kristoffersen, T. Dragojević, J. P. Culver, and T. Durduran, “Speckle contrast optical spectroscopy: A non-invasive, diffuse optical method for measuring microvascular blood flow in tissue,” Biomed. Opt. Express 5, 2769–12784 (2014).
    [Crossref] [PubMed]
  17. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express 5, 1275–1289 (2014).
    [Crossref] [PubMed]
  18. L. Hillesheim and J. Müller, “The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors,” Biophys. J. 85, 1948–1958 (2003).
    [Crossref] [PubMed]
  19. C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
    [Crossref] [PubMed]
  20. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Express 21, 22854–22861 (2013).
    [Crossref] [PubMed]
  21. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Lett. 38, 1401–1403 (2013).
    [Crossref] [PubMed]

2014 (4)

2013 (3)

2012 (1)

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

2010 (4)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Progress Phys. 1, 1–43 (2010).

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 1–12 (2010).
[Crossref]

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
[Crossref]

A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
[Crossref]

2009 (1)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
[Crossref]

2008 (1)

2005 (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

2004 (1)

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

2003 (1)

L. Hillesheim and J. Müller, “The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors,” Biophys. J. 85, 1948–1958 (2003).
[Crossref] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

1999 (1)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (lasca),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

Ayata, C.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Progress Phys. 1, 1–43 (2010).

Balial, S.

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

Bellisai, S.

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

Bi, R.

Boas, D. A.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 1–12 (2010).
[Crossref]

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (lasca),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

Brockherde, W.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Bronzi, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Progress Phys. 1, 1–43 (2010).

Culver, J. P.

Dale, A. M.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Devor, A.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

Dong, J.

Dragojevic, T.

Dunn, A. K.

S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5, 2157–2171 (2014).
[Crossref] [PubMed]

A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 1–12 (2010).
[Crossref]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
[Crossref] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Durduran, T.

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

Durini, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Franceschini, M. A.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

Gopal, A.

Guerrieri, F.

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
[Crossref]

Gursoy-Özdemir, Y.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (lasca),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref] [PubMed]

Hillesheim, L.

L. Hillesheim and J. Müller, “The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors,” Biophys. J. 85, 1948–1958 (2003).
[Crossref] [PubMed]

Huang, Z.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

Kazmi, S.

Kazmi, S. M.

Kristoffersen, A. K.

Lee, K.

Moskowitz, M. A.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Müller, J.

L. Hillesheim and J. Müller, “The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors,” Biophys. J. 85, 1948–1958 (2003).
[Crossref] [PubMed]

Nizar, K.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Parthasarathy, A. B.

Rajan, V.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
[Crossref]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (lasca),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref] [PubMed]

Saisan, P. A.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Sakaridžc, S.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Srinivasan, V. J.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Steenbergen, W.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
[Crossref]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

Tian, P.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
[Crossref]

Tom, W. J.

Tosi, A.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
[Crossref]

Valdes, C. P.

van Leeuwen, T. G.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
[Crossref]

Varghese, B.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
[Crossref]

Varma, H. M.

Villa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

Vinogradov, S. A.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

Weyers, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Yaseen, M. A.

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Progress Phys. 1, 1–43 (2010).

Yuan, S.

S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” ProQuest (2008).

Zappa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
[Crossref]

Zhang, X.

Biomed. Opt. Express (4)

Biophys. J. (1)

L. Hillesheim and J. Müller, “The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors,” Biophys. J. 85, 1948–1958 (2003).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

IEEE Photonics J. (1)

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics J. 2, 759–774 (2010).
[Crossref]

J. Biomed. Opt. (3)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (lasca),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 1–12 (2010).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[Crossref] [PubMed]

J. Cereb. Blood. Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood. Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

J. Cerebr. Blood F. Met. (1)

A. Devor, S. Sakaridžć, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met. 32, 1259–1276 (2012).
[Crossref]

Lasers in medical science (1)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers in medical science 24, 269–283 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Rep. Progress Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Progress Phys. 1, 1–43 (2010).

Rev. Sci. Intrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Intrum. 76, 093110 (2005).
[Crossref]

Other (1)

S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” ProQuest (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Typical acquisition scheme for the adopted SPAD array: given the absence of readout noise and short inter-frame dead time, longer integration time can be obtained by accumulating several shorter frames. The dynamic range is correspondingly increased.
Fig. 2
Fig. 2 Acquisition protocol for (a) standard and (b) and sMESI methods. TEXP,i is the i-th exposure time; TDECOR is the decorrelation time. TACQ is the acquisition of a single exposure time, while N is the number of exposure times (TFRAME) needed and M is the number of images for each exposure.
Fig. 3
Fig. 3 Measurement protocol and setup: (a) In vivo measurement setup, showing laser, SPAD camera and animal; (b) Protocol for in vivo measurement, showing how data was sequentially acquired. Each sequence had a single-shot acquisition MESI (sMESI) and standard acquisition (St).
Fig. 4
Fig. 4 Measured (a) intensity and (b) speckle contrast versus exposure time for the liquid phantom measurement. Standard data (dashed), and new single-shot acquisition data (solid line) are shown. The mean difference from intensity is 0.4 ± 0.1 % whereas, speckle contrast mean difference is 3.4 ± 1.3 %.
Fig. 5
Fig. 5 An in vivo image of the mouse brain with the selected region of interest (ROI, 8 × 5 pixels) of 4 × 2.5mm. The Teflon ring appears as a halo around the exposed brain. Field of view was approximately 3 × 1.5 cm.
Fig. 6
Fig. 6 Mouse measurements for (a) intensity and (b) speckle contrast as a function of exposure time are shown. The dashed line is the standard method and the solid line is the single-shot acquisition method. The mean difference between these two methods is for the intensity 0.95 ± 0.35%, and for the speckle contrast 8.8 ± 6.5%.
Fig. 7
Fig. 7 Fitted data from (a) standard and (b) single-shot acquisition from the baseline measurements. The mean residual between the theory and the experiment from the standard method is 9.2 ± 0.1% and for standard method is 9.2 ± 0.2%.
Fig. 8
Fig. 8 Bar plots for the changes in cerebral blood flow (a) for the hypercapnia challenge normalized to the baseline period immediately prior to hypercapnia (Table 1) and (b) for the hyperoxia challenge to the baseline period immediately prior to hyperoxia after the hypercapnia (Table 2).

Tables (2)

Tables Icon

Table 1 Fitted values for τc and cerebral blood flow with biological zero subtraction before, during and after hypercapnia.

Tables Icon

Table 2 Fitted values for τc and cerebral blood flow with biological zero subtraction before, during and after hyperoxia. The biological zero values are also shown in this table since the animal was sacrificed after hyperoxia.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ 2 = σ 2 I 2 = 2 β T 0 T g 1 2 ( τ ) ( 1 τ T ) d τ
κ 2 ( T , τ c ) = β e 2 ( T / τ c ) 1 + 2 ( T / τ c ) 2 ( T / τ c ) 2 .
κ 2 ( T , τ c ) = β ρ 2 e 2 ( T / τ c ) 1 + 2 ( T / τ c ) 2 ( T / τ c ) 2 + 4 β ρ ( 1 ρ ) e ( T / τ c ) 1 + ( T / τ c ) ( T / τ c ) 2 + v n o i s e

Metrics