Abstract

Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resolution improvements in integral microscopy with Fourier plane recording

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral
Opt. Express 24(18) 20792-20798 (2016)

FIMic: design for ultimate 3D-integral microscopy of in-vivo biological samples

G. Scrofani, J. Sola-Pikabea, A. Llavador, E. Sanchez-Ortiga, J. C. Barreiro, G. Saavedra, J. Garcia-Sucerquia, and M. Martínez-Corral
Biomed. Opt. Express 9(1) 335-346 (2018)

Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems

Manuel Martínez-Corral and Bahram Javidi
Adv. Opt. Photon. 10(3) 512-566 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  2. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
    [Crossref] [PubMed]
  3. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Plenum, 2006).
  4. E. H. K. Stelzer, K. Greger, E. G. Reynaud, Light Sheet Based Fluorescence Microscopy: Principles and Practice, (Wiley-Blackwell, 2014).
  5. Y. Qu and H. Yang, “Optical microscopy with flexible axial capabilities using a vari-focus liquid lens,” J. Microsc. 258(3), 212–222 (2015), doi:.
    [Crossref] [PubMed]
  6. M. Martinez-Corral, P.Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, Y.P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Display Technol.
  7. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  8. E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
    [Crossref] [PubMed]
  9. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
    [Crossref] [PubMed]
  10. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
    [Crossref] [PubMed]
  11. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
  12. D. F. Coffey, Apparatus for Making a Composite Stereograph, US Patent 2.063.985, 1936.
  13. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing 1, 3–20 (1991).
  14. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  15. M. Martinez-Corral, A. Dorado, H. Navarro, G. Saavedra, and B. Javidi, “3D display by Smart Pseudoscopic-to-Orthoscopic Conversion with tunable focus,” Appl. Opt. 53, E19–E26 (2014).
    [Crossref] [PubMed]
  16. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Tech. Rep. CSTR. 2 (2005).
  17. T. Georgiev and A. Lumsdaine, “The focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
    [Crossref]
  18. J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref] [PubMed]
  19. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  20. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref] [PubMed]
  21. Y. T. Lim, J. H. Park, K. Ch. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
    [Crossref] [PubMed]
  22. K.-Ch. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-L. Piao, K.-H. Yoo, and N. Kim, “Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system,” Biomed. Opt. Express 6(3), 736–746 (2015).
    [Crossref] [PubMed]
  23. http://www.zeiss.com/microscopy/en_de/products/imaging-systems/apotome-2.html
  24. X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications,” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  25. M. Martinez-Corral, A. Dorado, A. Llavador, G. Saavedra, and B. Javidi, “Three-Dimensional Integral Imaging and Display” in Multi-Dimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andres, eds. (John Willey and Sons. 2014) Chap. 11.
  26. H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Display Technol. 9(1), 37–43 (2013).
    [Crossref]
  27. M. Martinez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
    [Crossref]
  28. R. Ng, “Digital light field photography,” Ph. D. Thesis (Stanford University, 2006).
  29. N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
    [Crossref] [PubMed]
  30. H. Navarro, J. C. Barreiro, G. Saavedra, M. Martínez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
    [Crossref] [PubMed]
  31. E. H. K. Stelzer, “The intermediate optical system of laser-scanning confocal microscopes,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006) pp. 207–220.

2015 (2)

2014 (3)

2013 (3)

2012 (2)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

H. Navarro, J. C. Barreiro, G. Saavedra, M. Martínez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
[Crossref] [PubMed]

2010 (1)

T. Georgiev and A. Lumsdaine, “The focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

2009 (3)

M. Martinez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
[Crossref]

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Y. T. Lim, J. H. Park, K. Ch. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

2004 (1)

1999 (1)

1997 (1)

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

1991 (1)

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing 1, 3–20 (1991).

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Abrahamsson, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing 1, 3–20 (1991).

Agard, D. A.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Andalman, A.

Bargmann, C. I.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Barreiro, J. C.

Bergen, J. R.

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing 1, 3–20 (1991).

Broxton, M.

Chen, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Cohen, N.

Cuche, E.

Dahan, M.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Darzacq, X.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Deisseroth, K.

Depeursinge, C.

Doblas, A.

Dorado, A.

Dugast Darzacq, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Erdenebat, M.-U.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Garcia-Sucerquia, J.

Georgiev, T.

T. Georgiev and A. Lumsdaine, “The focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Grosenick, L.

Gustafsson, M. G. L.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Hajj, B.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Horowitz, M.

Huisken, J.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Jang, J. S.

Javidi, B.

Jeong, J.-S.

Juskaitis, R.

Katsov, A. Y.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Kim, N.

Kwon, K. Ch.

Kwon, K.-Ch.

Levoy, M.

Lim, Y. T.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Llavador, A.

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “The focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Marquet, P.

Martinez-Corral, M.

Martínez-Corral, M.

Mizuguchi, G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Mueller, F.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Navarro, H.

Neil, M. A. A.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Park, J. H.

Pavani, S. R. P.

Piao, Y.-L.

Piestun, R.

Qu, Y.

Y. Qu and H. Yang, “Optical microscopy with flexible axial capabilities using a vari-focus liquid lens,” J. Microsc. 258(3), 212–222 (2015), doi:.
[Crossref] [PubMed]

Saavedra, G.

Sánchez-Ortiga, E.

Soule, P.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Stallinga, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Stern, A.

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wilson, T.

Wisniewski, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Wu, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Xiao, X.

Yang, H.

Y. Qu and H. Yang, “Optical microscopy with flexible axial capabilities using a vari-focus liquid lens,” J. Microsc. 258(3), 212–222 (2015), doi:.
[Crossref] [PubMed]

Yang, S.

Yoo, K.-H.

ACM Trans. Graph. (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Appl. Opt. (4)

Biomed. Opt. Express (1)

Computational Models of Visual Processing (1)

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing 1, 3–20 (1991).

Development (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

J. Display Technol. (1)

J. Electron. Imaging (1)

T. Georgiev and A. Lumsdaine, “The focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

J. Microsc. (1)

Y. Qu and H. Yang, “Optical microscopy with flexible axial capabilities using a vari-focus liquid lens,” J. Microsc. 258(3), 212–222 (2015), doi:.
[Crossref] [PubMed]

J. Phys. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Nat. Methods (1)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Prog. Opt. (1)

M. Martinez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
[Crossref]

Other (9)

R. Ng, “Digital light field photography,” Ph. D. Thesis (Stanford University, 2006).

E. H. K. Stelzer, “The intermediate optical system of laser-scanning confocal microscopes,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006) pp. 207–220.

http://www.zeiss.com/microscopy/en_de/products/imaging-systems/apotome-2.html

M. Martinez-Corral, A. Dorado, A. Llavador, G. Saavedra, and B. Javidi, “Three-Dimensional Integral Imaging and Display” in Multi-Dimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andres, eds. (John Willey and Sons. 2014) Chap. 11.

D. F. Coffey, Apparatus for Making a Composite Stereograph, US Patent 2.063.985, 1936.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Tech. Rep. CSTR. 2 (2005).

M. Martinez-Corral, P.Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, Y.P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Display Technol.

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Plenum, 2006).

E. H. K. Stelzer, K. Greger, E. G. Reynaud, Light Sheet Based Fluorescence Microscopy: Principles and Practice, (Wiley-Blackwell, 2014).

Supplementary Material (5)

NameDescription
» Visualization 1: AVI (178 KB)      Media 1
» Visualization 2: AVI (1152 KB)      Media 2
» Visualization 3: AVI (894 KB)      Media 3
» Visualization 4: AVI (489 KB)      Media 4
» Visualization 5: AVI (839 KB)      Media 5

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme of an InI camera and sketch of the sampled radiance map captured with it. The spatial sampling period is Δ x =p . The angular sampling period, Δ θ , is the angular size of pixels as seen from the MLA
Fig. 2
Fig. 2 Scheme of an IMic, which is the result of inserting a MLA in the optical path of the host microscope.
Fig. 3
Fig. 3 Image of a USAF 1951 test by using a microscope with 20x, NA = 0.2. (a) Collection of 113x113 microimages, with 17x17 pixels each, of the USAF chart obtained with the IMic.
Fig. 4
Fig. 4 (a) Orthographic views obtained by applying the transposition to the microimages (b) Image reconstructed from the radiance map extracted from (a).
Fig. 5
Fig. 5 Single-frame excerpted from a video that shows the functioning of the time-multiplexing IMic (Visualization 1).
Fig. 6
Fig. 6 Panel (a) and (b) show the two images, colored in red and green, taken for the composition shown in panel (c).
Fig. 7
Fig. 7 (a) and (b), Microimages obtained after one-shot for two different axial positions of the USAF 1951 test target, and (c) and (d) their respective reconstruction when applying the physical interpolation.
Fig. 8
Fig. 8 (a) Set of 113x113 microimages of a seaweed thallus captured by the IMIC. (b) Corresponding set of 226x226 microimages of the specimen obtained by interlacing the microimages images captured with the time-multiplexing IMic. (c) Orthographic views calculated by the transposition of microimages.
Fig. 9
Fig. 9 Orthographic views of the seaweed thallus obtained by the IMic for (a) single-shot (Visualization 2), and (c) physical interpolation (Visualization 3). Single frame extracted from the depth reconstruction for (b) single shot (Visualization 4) and (d) physical interpolation (Visualization 5).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ C [M p 1 ,2M p 1 ] ,
ρ C nat = 2NA λ .
d=eγ n1 n ,

Metrics