Abstract

Diseases that affect the cornea can lead to severe vision loss and have tremendous social impact. These diseases are associated to deviations from normal structural order and orientation of collagen fibril bundles. Unfortunately, resolving non-invasively the corneal collagen structure is not possible to date. In this work, polarization sensitive second harmonic generation (pSHG) microscopy is used to obtain information with molecular specificity on microstructure of human corneas. This information is used to develop a set of label-free imaging biomarkers that were generated by means of a novel methodology based on mathematical tensorial calculus. The method is proven to be highly sensitive and robust. The use of these biomarkers permits accurate characterization of the anisotropic, depth-dependent, structural organization of corneal collagen fibril bundles without any a priori information. The method can be valuable to improve understanding of microstructural pathophysiological changes of the human cornea close to in vivo conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Identifying crossing collagen fibers in human corneal tissues using pSHG images

M. Alizadeh, D. Merino, G. Lombardo, M. Lombardo, R. Mencucci, M. Ghotbi, and P. Loza-Alvarez
Biomed. Opt. Express 10(8) 3875-3888 (2019)

In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy

Gaël Latour, Ivan Gusachenko, Laura Kowalczuk, Isabelle Lamarre, and Marie-Claire Schanne-Klein
Biomed. Opt. Express 3(1) 1-15 (2012)

Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images

Juan M. Bueno, Raquel Palacios, Mary K. Chessey, and Harilaos Ginis
Biomed. Opt. Express 4(7) 1006-1013 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
    [PubMed]
  2. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136(2), 263–286 (1957).
    [Crossref] [PubMed]
  3. K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
    [Crossref] [PubMed]
  4. M. S. Rajan, “Surgical strategies to improve visual outcomes in corneal transplantation,” Eye (Lond.) 28(2), 196–201 (2014).
    [Crossref] [PubMed]
  5. Y. Komai and T. Ushiki, “The three-dimensional organization of collagen fibrils in the human cornea and sclera,” Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991).
    [PubMed]
  6. K. M. Meek and C. Boote, “The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma,” Prog. Retin. Eye Res. 28(5), 369–392 (2009).
    [Crossref] [PubMed]
  7. R. H. Andreo and R. A. Farrell, “Corneal small-angle light-scattering theory: wavy fibril models,” J. Opt. Soc. Am. 72(11), 1479–1492 (1982).
    [Crossref] [PubMed]
  8. G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
    [Crossref] [PubMed]
  9. W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
    [Crossref] [PubMed]
  10. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  11. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205 (2011).
    [Crossref]
  12. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
    [Crossref] [PubMed]
  13. A. Medyukhina, N. Vogler, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Automated classification of healthy and keloidal collagen patterns based on processing of SHG images of human skin,” J. Biophotonics n/a–n/a (2011).
  14. Y. Mega, M. Robitaille, R. Zareian, J. McLean, J. Ruberti, and C. DiMarzio, “Quantification of lamellar orientation in corneal collagen using second harmonic generation images,” Opt. Lett. 37(16), 3312–3314 (2012).
    [Crossref] [PubMed]
  15. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
    [Crossref] [PubMed]
  16. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
    [Crossref] [PubMed]
  17. Y. Tanaka, E. Hase, S. Fukushima, T. Yasui, and T. Araki, “In vivo imaging of collagen fiber orientation with rapid polarization-resolved SHG microscopy,” in A. Periasamy, K. König, and P. T. C. So, eds. (2013), p. 85882X.
  18. V. A. Hovhannisyan, P.-S. Hu, and C.-Y. Dong, “Collagen fiber spatial orientation mapping using polarization-sensitive SHG microscopy,” in Q. Luo, Y. Gu, and X. D. Li, eds. (2012), p. 855312.
  19. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
    [Crossref] [PubMed]
  20. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express 3(10), 2681–2693 (2012).
    [Crossref] [PubMed]
  21. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
    [Crossref] [PubMed]
  22. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
    [Crossref] [PubMed]
  23. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [Crossref] [PubMed]
  24. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
    [Crossref] [PubMed]
  25. I. Amat-Roldan, S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast image analysis in polarization SHG microscopy,” Opt. Express 18(16), 17209–17219 (2010).
    [Crossref] [PubMed]
  26. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009).
    [Crossref] [PubMed]
  27. W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
    [Crossref] [PubMed]
  28. M. S. Sacks and C. J. Chuong, “Characterization of Collagen Fiber Architecture in the Canine Diaphragmatic Central Tendon,” J. Biomech. Eng. 114(2), 183–190 (1992).
    [Crossref] [PubMed]
  29. M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
    [Crossref] [PubMed]
  30. W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
    [Crossref] [PubMed]
  31. M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
    [Crossref] [PubMed]
  32. N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
    [Crossref] [PubMed]
  33. D. W. L. Hukins and J. Woodhead-galloway, “Collagen fibrils as examples of smectic a biological fibres,” Molecular Crystals and Liquid Crystals 41(2), 33–39 (1977).
    [Crossref]
  34. D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
    [Crossref] [PubMed]
  35. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Reprint, The International Series of Monographs on Physics No. 83 (Clarendon Press, 2007).
  36. R. J. Low, “Measuring order and biaxiality,” Eur. J. Phys. 23(2), 111–117 (2002).
    [Crossref]
  37. G. Lombardo, H. Ayeb, and R. Barberi, “Dynamical numerical model for nematic order reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 051708 (2008).
    [Crossref] [PubMed]
  38. S. J. Press and S. Wilson, “Choosing between logistic regression and discriminant analysis,” J. Am. Stat. Assoc. 73(364), 699–705 (1978).
    [Crossref]
  39. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
    [Crossref] [PubMed]
  40. J. M. Bueno, R. Palacios, M. K. Chessey, and H. Ginis, “Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images,” Biomed. Opt. Express 4(7), 1006–1013 (2013).
    [PubMed]
  41. G. J. Van Blokland and S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4(1), 82–90 (1987).
    [Crossref] [PubMed]
  42. O. del Barco and J. M. Bueno, “Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength,” J. Biomed. Opt. 17(4), 045005 (2012).
    [Crossref] [PubMed]
  43. D. E. Freund, R. L. McCally, and R. A. Farrell, “Direct summation of fields for light scattering by fibrils with applications to normal corneas,” Appl. Opt. 25(16), 2739 (1986).
    [Crossref] [PubMed]
  44. T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37(2), 249–253 (1997).
    [Crossref] [PubMed]
  45. F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
    [Crossref] [PubMed]
  46. N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
    [Crossref] [PubMed]
  47. H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
    [Crossref] [PubMed]
  48. S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy,” Biomed. Opt. Express 5(12), 4362–4373 (2014).
    [Crossref] [PubMed]
  49. M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
    [Crossref] [PubMed]
  50. K. Ozulken, F. Cabot, and S. H. Yoo, “Applications of femtosecond lasers in ophthalmic surgery,” Expert Rev. Med. Devices 10(1), 115–124 (2013).
    [Crossref] [PubMed]
  51. X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
    [Crossref] [PubMed]
  52. S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
    [PubMed]
  53. M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
    [Crossref] [PubMed]

2015 (1)

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

2014 (3)

M. S. Rajan, “Surgical strategies to improve visual outcomes in corneal transplantation,” Eye (Lond.) 28(2), 196–201 (2014).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy,” Biomed. Opt. Express 5(12), 4362–4373 (2014).
[Crossref] [PubMed]

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

2013 (5)

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

K. Ozulken, F. Cabot, and S. H. Yoo, “Applications of femtosecond lasers in ophthalmic surgery,” Expert Rev. Med. Devices 10(1), 115–124 (2013).
[Crossref] [PubMed]

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

J. M. Bueno, R. Palacios, M. K. Chessey, and H. Ginis, “Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images,” Biomed. Opt. Express 4(7), 1006–1013 (2013).
[PubMed]

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

2012 (6)

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express 3(10), 2681–2693 (2012).
[Crossref] [PubMed]

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

Y. Mega, M. Robitaille, R. Zareian, J. McLean, J. Ruberti, and C. DiMarzio, “Quantification of lamellar orientation in corneal collagen using second harmonic generation images,” Opt. Lett. 37(16), 3312–3314 (2012).
[Crossref] [PubMed]

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
[Crossref] [PubMed]

O. del Barco and J. M. Bueno, “Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength,” J. Biomed. Opt. 17(4), 045005 (2012).
[Crossref] [PubMed]

S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
[PubMed]

2011 (3)

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205 (2011).
[Crossref]

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

2010 (4)

I. Amat-Roldan, S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast image analysis in polarization SHG microscopy,” Opt. Express 18(16), 17209–17219 (2010).
[Crossref] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

2009 (4)

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[Crossref] [PubMed]

K. M. Meek and C. Boote, “The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma,” Prog. Retin. Eye Res. 28(5), 369–392 (2009).
[Crossref] [PubMed]

2008 (1)

G. Lombardo, H. Ayeb, and R. Barberi, “Dynamical numerical model for nematic order reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 051708 (2008).
[Crossref] [PubMed]

2007 (2)

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
[Crossref] [PubMed]

G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[Crossref] [PubMed]

2006 (2)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

2005 (1)

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

2004 (2)

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (2)

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[Crossref] [PubMed]

R. J. Low, “Measuring order and biaxiality,” Eur. J. Phys. 23(2), 111–117 (2002).
[Crossref]

2001 (1)

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

1998 (1)

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
[Crossref] [PubMed]

1997 (1)

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37(2), 249–253 (1997).
[Crossref] [PubMed]

1995 (1)

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
[Crossref] [PubMed]

1992 (1)

M. S. Sacks and C. J. Chuong, “Characterization of Collagen Fiber Architecture in the Canine Diaphragmatic Central Tendon,” J. Biomech. Eng. 114(2), 183–190 (1992).
[Crossref] [PubMed]

1991 (1)

Y. Komai and T. Ushiki, “The three-dimensional organization of collagen fibrils in the human cornea and sclera,” Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991).
[PubMed]

1987 (1)

1986 (1)

1982 (1)

1978 (1)

S. J. Press and S. Wilson, “Choosing between logistic regression and discriminant analysis,” J. Am. Stat. Assoc. 73(364), 699–705 (1978).
[Crossref]

1977 (1)

D. W. L. Hukins and J. Woodhead-galloway, “Collagen fibrils as examples of smectic a biological fibres,” Molecular Crystals and Liquid Crystals 41(2), 33–39 (1977).
[Crossref]

1957 (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136(2), 263–286 (1957).
[Crossref] [PubMed]

Albon, J.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Amat-Roldan, I.

Andreo, R. H.

Aptel, F.

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

Artal, P.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

Artigas, D.

Aufreiter, R.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
[Crossref] [PubMed]

Ayeb, H.

G. Lombardo, H. Ayeb, and R. Barberi, “Dynamical numerical model for nematic order reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 051708 (2008).
[Crossref] [PubMed]

Balu, M.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Barberi, R.

G. Lombardo, H. Ayeb, and R. Barberi, “Dynamical numerical model for nematic order reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 051708 (2008).
[Crossref] [PubMed]

Beaurepaire, E.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

Bechara, J. A.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Bellefqih, S.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Bertin, B. M. E.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Boote, C.

K. M. Meek and C. Boote, “The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma,” Prog. Retin. Eye Res. 28(5), 369–392 (2009).
[Crossref] [PubMed]

Borderie, V.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Both, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Brasselet, S.

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205 (2011).
[Crossref]

Bron, A. J.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Brown, D. J.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Bueno, J. M.

J. M. Bueno, R. Palacios, M. K. Chessey, and H. Ginis, “Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images,” Biomed. Opt. Express 4(7), 1006–1013 (2013).
[PubMed]

O. del Barco and J. M. Bueno, “Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength,” J. Biomed. Opt. 17(4), 045005 (2012).
[Crossref] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

Cabot, F.

K. Ozulken, F. Cabot, and S. H. Yoo, “Applications of femtosecond lasers in ophthalmic surgery,” Expert Rev. Med. Devices 10(1), 115–124 (2013).
[Crossref] [PubMed]

Campagnola, P. J.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Celliers, P. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[Crossref] [PubMed]

Chen, G.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Chen, J.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Chen, S.-J.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

Chen, S.-Y.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Chen, W.-L.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

Chen, Y.-C.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Chen, Y.-F.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Chern, G.-W.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Chessey, M. K.

Chikama, T. I.

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

Chong, S. P.

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

Chu, S.-W.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Chuong, C. J.

M. S. Sacks and C. J. Chuong, “Characterization of Collagen Fiber Architecture in the Canine Diaphragmatic Central Tendon,” J. Biomech. Eng. 114(2), 183–190 (1992).
[Crossref] [PubMed]

Cicchi, R.

Dahlmann-Noor, A.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

del Barco, O.

O. del Barco and J. M. Bueno, “Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength,” J. Biomed. Opt. 17(4), 045005 (2012).
[Crossref] [PubMed]

Deniset-Besseau, A.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

DiMarzio, C.

Dong, C.-Y.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Durkin, A. J.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Ethier, C. R.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Farrell, R. A.

Fink, R. H. A.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Fratzl, P.

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
[Crossref] [PubMed]

Freund, D. E.

Friedrich, O.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Ghazaryan, A. A.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

Ghouali, W.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Gill, P. S.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Ginis, H.

Girard, M. J. A.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Grieve, K.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Gualda, E. J.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

Gusachenko, I.

Harms, F.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Harris, R. M.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Hayes, S.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Hsiao, C.-H.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Hsueh, C.-M.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

Huang, S. C.-M.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Huang, Y.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Hukins, D. W. L.

D. W. L. Hukins and J. Woodhead-galloway, “Collagen fibrils as examples of smectic a biological fibres,” Molecular Crystals and Liquid Crystals 41(2), 33–39 (1977).
[Crossref]

Hulmes, D. J.

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
[Crossref] [PubMed]

Jee, S.-H.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Jester, J. V.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Jones, H.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Juhasz, T.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Kapsokalyvas, D.

Kelly, K. M.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Khaw, P. T.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Komai, Y.

Y. Komai and T. Ushiki, “The three-dimensional organization of collagen fibrils in the human cornea and sclera,” Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991).
[PubMed]

König, K.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Kowalczuk, L.

Krasieva, T. B.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Künsting, T.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Lamarre, I.

Laroche, L.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Latour, G.

Legeais, J.-M.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

Levene, M. J.

S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
[PubMed]

Lin, B.-L.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Lin, S.-J.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Lin, W.-C.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Lo, W.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Lombardo, G.

G. Lombardo, H. Ayeb, and R. Barberi, “Dynamical numerical model for nematic order reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 051708 (2008).
[Crossref] [PubMed]

Low, R. J.

R. J. Low, “Measuring order and biaxiality,” Eur. J. Phys. 23(2), 111–117 (2002).
[Crossref]

Loza-Alvarez, P.

Lu, J.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Ma, D. H.-K.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

Mallinger, R.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
[Crossref] [PubMed]

Matteini, P.

Maurice, D. M.

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136(2), 263–286 (1957).
[Crossref] [PubMed]

McCally, R. L.

McLean, J.

Meek, K. M.

K. M. Meek and C. Boote, “The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma,” Prog. Retin. Eye Res. 28(5), 369–392 (2009).
[Crossref] [PubMed]

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Mega, Y.

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Misson, G. P.

G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[Crossref] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Morishige, N.

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

Murray, T. A.

S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
[PubMed]

Newton, R. H.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Nishida, T.

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

Olivier, N.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

Ozulken, K.

K. Ozulken, F. Cabot, and S. H. Yoo, “Applications of femtosecond lasers in ophthalmic surgery,” Expert Rev. Med. Devices 10(1), 115–124 (2013).
[Crossref] [PubMed]

Palacios, R.

Paques, M.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Parra, S. G.

S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
[PubMed]

Pavone, F. S.

Petsche, S. J.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Pini, R.

Pinsky, P. M.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Plamann, K.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

Planas, A. M.

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Press, S. J.

S. J. Press and S. Wilson, “Choosing between logistic regression and discriminant analysis,” J. Am. Stat. Assoc. 73(364), 699–705 (1978).
[Crossref]

Prockop, D. J.

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
[Crossref] [PubMed]

Psilodimitrakopoulos, S.

Qiu, J.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Radner, W.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
[Crossref] [PubMed]

Rajan, M. S.

M. S. Rajan, “Surgical strategies to improve visual outcomes in corneal transplantation,” Eye (Lond.) 28(2), 196–201 (2014).
[Crossref] [PubMed]

Ratto, F.

Rayapureddi, S.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Recher, G.

Reiser, K. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[Crossref] [PubMed]

Robitaille, M.

Rossi, F.

Rouède, D.

Rubenchik, A. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[Crossref] [PubMed]

Ruberti, J.

Sacks, M. S.

M. S. Sacks and C. J. Chuong, “Characterization of Collagen Fiber Architecture in the Canine Diaphragmatic Central Tendon,” J. Biomech. Eng. 114(2), 183–190 (1992).
[Crossref] [PubMed]

Sandali, O.

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Schanne-Klein, M. C.

Schanne-Klein, M.-C.

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

Shen, M.

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

Shoa, G.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Soria, G.

Spekreijse, H.

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37(2), 249–253 (1997).
[Crossref] [PubMed]

Srinivasan, M.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Stoller, P.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[Crossref] [PubMed]

Stringari, C.

Sun, C.-K.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Sun, Y.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Takagi, Y.

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

Takahara, A.

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

Tan, H.-Y.

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Tang, S.

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Tiaho, F.

Tian, Y.

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

Tromberg, B. J.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Tsai, T.-H.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

Tuft, S. J.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

Upadhyay, M. P.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Ushiki, T.

Y. Komai and T. Ushiki, “The three-dimensional organization of collagen fibrils in the human cornea and sclera,” Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991).
[PubMed]

Uttenweiler, D.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Van Blokland, G. J.

van den Berg, T. J.

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37(2), 249–253 (1997).
[Crossref] [PubMed]

Verhelst, S. C.

Vesuna, S. S.

S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
[PubMed]

Vogel, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

von Wegner, F.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wess, T. J.

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
[Crossref] [PubMed]

Whitcher, J. P.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wilson, S.

S. J. Press and S. Wilson, “Choosing between logistic regression and discriminant analysis,” J. Am. Stat. Assoc. 73(364), 699–705 (1978).
[Crossref]

Winkler, M.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Woodhead-galloway, J.

D. W. L. Hukins and J. Woodhead-galloway, “Collagen fibrils as examples of smectic a biological fibres,” Molecular Crystals and Liquid Crystals 41(2), 33–39 (1977).
[Crossref]

Wu, X.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Xie, S.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Xie, Y.

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

Yan, J.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Yoo, S. H.

K. Ozulken, F. Cabot, and S. H. Yoo, “Applications of femtosecond lasers in ophthalmic surgery,” Expert Rev. Med. Devices 10(1), 115–124 (2013).
[Crossref] [PubMed]

Yu, H.-S.

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

Zachary, C. B.

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Zareian, R.

Zehetmayer, M.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
[Crossref] [PubMed]

Zeng, H.

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

Zhao, J.

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

Zhu, W.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Zhuo, S.

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205 (2011).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Biophys. J. (4)

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[Crossref] [PubMed]

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, “Radial packing, order, and disorder in collagen fibrils,” Biophys. J. 68(5), 1661–1670 (1995).
[Crossref] [PubMed]

Bull. World Health Organ. (1)

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Cancer Res. (1)

M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg, “Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy,” Cancer Res. 74(10), 2688–2697 (2014).
[Crossref] [PubMed]

Cornea (1)

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998).
[Crossref] [PubMed]

Curr. Eye Res. (1)

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms, L. Laroche, M. Paques, and V. Borderie, “Full-field optical coherence tomography of human donor and pathological corneas,” Curr. Eye Res. 40(5), 526–534 (2015).
[Crossref] [PubMed]

Eur. J. Phys. (1)

R. J. Low, “Measuring order and biaxiality,” Eur. J. Phys. 23(2), 111–117 (2002).
[Crossref]

Expert Rev. Med. Devices (1)

K. Ozulken, F. Cabot, and S. H. Yoo, “Applications of femtosecond lasers in ophthalmic surgery,” Expert Rev. Med. Devices 10(1), 115–124 (2013).
[Crossref] [PubMed]

Eye (Lond.) (1)

M. S. Rajan, “Surgical strategies to improve visual outcomes in corneal transplantation,” Eye (Lond.) 28(2), 196–201 (2014).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (8)

Y. Komai and T. Ushiki, “The three-dimensional organization of collagen fibrils in the human cornea and sclera,” Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991).
[PubMed]

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes, R. H. Newton, and A. J. Bron, “Changes in Collagen Orientation and Distribution in Keratoconus Corneas,” Invest. Ophthalmol. Vis. Sci. 46(6), 1948–1956 (2005).
[Crossref] [PubMed]

W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, C.-Y. Dong, and H.-Y. Tan, “Fast Fourier Transform-Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea,” Invest. Ophthalmol. Vis. Sci. 53(7), 3501–3507 (2012).
[Crossref] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[Crossref] [PubMed]

M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, and J. V. Jester, “Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 54(12), 7293–7301 (2013).
[Crossref] [PubMed]

N. Morishige, Y. Takagi, T. I. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011).
[Crossref] [PubMed]

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006).
[Crossref] [PubMed]

J. Am. Stat. Assoc. (1)

S. J. Press and S. Wilson, “Choosing between logistic regression and discriminant analysis,” J. Am. Stat. Assoc. 73(364), 699–705 (1978).
[Crossref]

J. Biomech. Eng. (1)

M. S. Sacks and C. J. Chuong, “Characterization of Collagen Fiber Architecture in the Canine Diaphragmatic Central Tendon,” J. Biomech. Eng. 114(2), 183–190 (1992).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

O. del Barco and J. M. Bueno, “Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength,” J. Biomed. Opt. 17(4), 045005 (2012).
[Crossref] [PubMed]

M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, and S. Tang, “Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy,” J. Biomed. Opt. 18(11), 115003 (2013).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136(2), 263–286 (1957).
[Crossref] [PubMed]

J. Vis. Exp. (1)

S. G. Parra, S. S. Vesuna, T. A. Murray, and M. J. Levene, “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp. 67(67), e3848 (2012).
[PubMed]

Molecular Crystals and Liquid Crystals (1)

D. W. L. Hukins and J. Woodhead-galloway, “Collagen fibrils as examples of smectic a biological fibres,” Molecular Crystals and Liquid Crystals 41(2), 33–39 (1977).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Lombardo, H. Ayeb, and R. Barberi, “Dynamical numerical model for nematic order reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 051708 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

X. Wu, G. Chen, J. Lu, W. Zhu, J. Qiu, J. Chen, S. Xie, S. Zhuo, and J. Yan, “Label-free detection of breast masses using multiphoton microscopy,” PLoS ONE 8(6), e65933 (2013).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

K. M. Meek and C. Boote, “The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma,” Prog. Retin. Eye Res. 28(5), 369–392 (2009).
[Crossref] [PubMed]

Vision Res. (1)

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37(2), 249–253 (1997).
[Crossref] [PubMed]

Other (4)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Reprint, The International Series of Monographs on Physics No. 83 (Clarendon Press, 2007).

A. Medyukhina, N. Vogler, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Automated classification of healthy and keloidal collagen patterns based on processing of SHG images of human skin,” J. Biophotonics n/a–n/a (2011).

Y. Tanaka, E. Hase, S. Fukushima, T. Yasui, and T. Araki, “In vivo imaging of collagen fiber orientation with rapid polarization-resolved SHG microscopy,” in A. Periasamy, K. König, and P. T. C. So, eds. (2013), p. 85882X.

V. A. Hovhannisyan, P.-S. Hu, and C.-Y. Dong, “Collagen fiber spatial orientation mapping using polarization-sensitive SHG microscopy,” in Q. Luo, Y. Gu, and X. D. Li, eds. (2012), p. 855312.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Schematics of a collagen fibril. The collagen fibril (quaternary structure) is composed by three polypeptide helixes of tropocollagen (tertiary structure) that are binding together by cross-links. Collagen fibrils are binding together to form collagen bundles and lamellae within the corneal stroma. The microscopy set-up follows the forward-detection scheme, with the laser beam propagating along the Z direction. The collagen symmetric axis z orientation is determined by the off-plane angle δ and the in-plane angle ϕ. b) Magnification of the collagen fibril showing the tropocollagen molecules. Hyperpolarizability βννν directions (hightailed green arrow) and angle θe representing the helical pitch of collagen. c) pSHG image from a corneal tissue with the laboratory coordinate system X, Y, Z. The double headed red arrow shows the orientation of the polarized excitation light. The dimensions of the panels and directions are illustrative and do not correspond to reality.
Fig. 2
Fig. 2 Workflow of the calculation done to retrieve the orientation and structural order of the collagen fibril bundles in pSHG images of the human cornea and to predict their membership in the anterior or posterior corneal stroma.
Fig. 3
Fig. 3 Method robustness. In a) is shown a representative pSHG image of the posterior stroma. Scale bar is 10 µm. In b-d) are shown the orientation of collagen fibril bundles of the filtered images and their corresponding FODFs for 2 dB SNR-, 10 dB SNR- and 20 dB SNR-threshold respectively. The fibril orientation varies from 0 (fiber aligned along the horizontal axis, blue colour), to π (red colour). The peak value of FODF does not change, showing that pSHG data analysis is highly robust with respect to the noise. The fibril direction is referenced to the horizontal axis in counter clockwise direction.
Fig. 4
Fig. 4 Three dimensional (3D) reconstruction pSHG images of the normal human cornea. a) Cross-section view of 3D reconstruction of the microstructure of the human cornea (the arrow indicates the Bowman’s layer). The human corneal structure is highly complex and heterogeneous with respect to corneal depth. The anterior portion shows considerably more collagen fibers branching than the posterior stroma, where the fibers lie mostly oriented parallel to the corneal surface. Scale bar: 50 µm. b-e) Images of the anterior (from the Bowman’s layer to 80 μm depth) and posterior (from 240 to 310 μm depth) portions of the human cornea. b, c) Projection images of collagen fibril bundles across the anterior and posterior corneal segments respectively. d, e) Cross-section views of the anterior and posterior corneal portions respectively. The anterior collagen fibrils are arranged in short bundles interweaving each other at apparently random orientation; the most anterior collagen fibril bundles form dense branching with the Bowman’s layer. The posterior collagen fibril bundles are arranged in lamellae that intersect each other at preferred orientations of 60-90°. The corneal sections shown in b-e) subtend an area of 440x440 µm.
Fig. 5
Fig. 5 Results of the methodological approach developed to retrieve the preferred orientation and structural order of stromal collagen fibril bundles. (a) Two representative pSHG images acquired from the anterior (focal depth: 25 µm) and posterior (focal depth: 260 µm) lenticules of two corneal specimens are shown in the superior and inferior row respectively. Scale bars represent 10 µm. (b) The FODF was calculated for comparison purpose with the novel pSHG based imaging biomarkers. The FODF describes the angular distribution of the collagen fibers. It provides reliable measurements when only one or two preferred directions run across the focal plane, as found in the posterior stroma; nevertheless, it does not provide any local spatial information to classify the complex microstructure of the human cornea with respect to depth. (c) The main director f of corneal collagen fibers is calculated by taking into account the direction of the collagen fibrils (ui ) that lie within the focal plane zp ; here, f is 101° and 120° for the anterior and posterior pSHG images respectively. Colour scale bars show radians. The fibril direction is referenced to the horizontal axis in counter clockwise direction. (d) The spatial structural order of corneal collagen fibrils is defined by S and can be spatially mapped by s, that ranges between −0.5 (blue colour) and 1 (red colour). The maximum positive value indicates that the collagen fibril bundles are aligned along f; the maximum negative value indicates that they are oriented perpendicular to it. Here, the parameter S is 0.32 and 0.80 for the anterior and posterior pSHG image respectively. The parameter T, indicating the % of collagen fibril bundles with a negative s value within the focal plane, is 29.5% and 0.6% for the anterior and posterior pSHG images respectively.
Fig. 6
Fig. 6 Order parameter, S, and inhomogeneity index, T. (a) Histograms showing the average values of S for the anterior (grey) and posterior (black) corneal lenticules of each specimen. Bars indicate standard deviation. (b) Histograms showing the average T values for the anterior (grey) and posterior (black) corneal lenticules of each specimen. Bars indicate standard deviation.

Tables (1)

Tables Icon

Table 1 Classification of stromal lenticules by logistic regression analysis

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

0 π F O D F ( ϕ , z p ) d ϕ = 1
Q ( z p ) = 1 N m i = 1 N m ( 3 2 u i u i 1 2 I )
I 2 ω ~ sin 2 2 ( ϕ α ) + [ sin 2 ( ϕ α ) + ρ cos 2 ( ϕ α ) ] 2
ρ = χ 33 χ 15 cos 2 δ + 3 sin 2 δ
I 2 ω ( ϕ ) = c 0 + c 1 cos 2 ( ϕ α ) + c 2 cos 4 ( ϕ α )
ρ = | c 0 | + | c 1 | + | c 2 | | c 0 | | c 1 | + | c 2 |
χ z z z χ z x x = χ 33 χ 15 = 2 tan 2 θ e
I t o t ( x , y , z ) = I S H G ( x , y , z ) + N ( x , y , z )
P s = 2 * i = 1 2 | c i | 2
S N R = i = 1 2 | c i | 2 i = 3 6 | c i | 2

Metrics