Abstract

The understanding of the reproductive events and the molecular mechanisms regulating fertility and infertility in humans relies heavily on the analysis of the corresponding phenotypes in mouse models. While molecular genetic approaches provide significant insight into the molecular regulation of these processes, the lack of live imaging methods that allow for detailed visualization of the mouse reproductive organs limits our investigations of dynamic events taking place during the ovulation, the fertilization and the pre-implantation stages of embryonic development. Here we introduce an in vivo three-dimensional imaging approach for visualizing the mouse oviduct and reproductive events with micro-scale spatial resolution using optical coherence tomography (OCT). This method relies on the natural tissue optical contrast and does not require the application of any contrast agents. For the first time, we present live high-resolution images of the internal structural features of the oviduct, as well as other reproductive organs and the oocytes surrounded by cumulus cells. These results provide the basis for a wide range of live dynamic studies focused on understanding fertility and infertility.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography

Shang Wang, Monica D. Garcia, Andrew L. Lopez, Paul A. Overbeek, Kirill V. Larin, and Irina V. Larina
Biomed. Opt. Express 8(1) 407-419 (2017)

Optical coherence tomography imaging for analysis of follicular development in ovarian tissue

Yuuki Watanabe, Kei Takakura, Reiko Kurotani, and Hiroyuki Abe
Appl. Opt. 54(19) 6111-6115 (2015)

Biodynamic imaging of live porcine oocytes, zygotes and blastocysts for viability assessment in assisted reproductive technologies

Ran An, Chunmin Wang, John Turek, Zoltan Machaty, and David D. Nolte
Biomed. Opt. Express 6(3) 963-976 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Stewart and R. R. Behringer, “Mouse oviduct development,” Results Probl. Cell Differ. 55, 247–262 (2012).
    [PubMed]
  2. J. E. Ellington, “The bovine oviduct and its role in reproduction: a review of the literature,” Cornell Vet. 81(3), 313–328 (1991).
    [PubMed]
  3. H. B. Croxatto, “Physiology of gamete and embryo transport through the fallopian tube,” Reprod. Biomed. Online 4(2), 160–169 (2002).
    [Crossref] [PubMed]
  4. A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
    [Crossref] [PubMed]
  5. R. H. F. Hunter, The Fallopian tubes: Their Role in Fertility and Infertility (Springer-Verlag, 1988).
  6. M. M. Matzuk and D. J. Lamb, “The biology of infertility: research advances and clinical challenges,” Nat. Med. 14(11), 1197–1213 (2008).
    [Crossref] [PubMed]
  7. H. Wang and S. K. Dey, “Roadmap to embryo implantation: clues from mouse models,” Nat. Rev. Genet. 7(3), 185–199 (2006).
    [Crossref] [PubMed]
  8. R. Shao, J. Hu, and H. Billig, “Toward understanding chlamydia infection-induced infertility caused by dysfunctional oviducts,” J. Infect. Dis. 208(4), 707–709 (2013).
    [Crossref] [PubMed]
  9. M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
    [Crossref] [PubMed]
  10. R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
    [Crossref] [PubMed]
  11. M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
    [Crossref] [PubMed]
  12. M. A. Fritz, “The modern infertility evaluation,” Clin. Obstet. Gynecol. 55(3), 692–705 (2012).
    [Crossref] [PubMed]
  13. F. Petraglia, G. I. Serour, and C. Chapron, “The changing prevalence of infertility,” Int. J. Gynaecol. Obstet. 123(Suppl 2), S4–S8 (2013).
    [Crossref] [PubMed]
  14. S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
    [Crossref] [PubMed]
  15. G. Gonzalez and R. R. Behringer, “Dicer is required for female reproductive tract development and fertility in the mouse,” Mol. Reprod. Dev. 76(7), 678–688 (2009).
    [Crossref] [PubMed]
  16. S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
    [Crossref] [PubMed]
  17. S. S. Suarez, “Sperm transport and motility in the mouse oviduct: observations in situ,” Biol. Reprod. 36(1), 203–210 (1987).
    [Crossref] [PubMed]
  18. S. Kölle, S. Reese, and W. Kummer, “New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging,” Theriogenology 73(6), 786–795 (2010).
    [Crossref] [PubMed]
  19. D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
    [Crossref] [PubMed]
  20. M. Komatsu and H. Fujita, “Electron-microscopic studies on the development and aging of the oviduct epithelium of mice,” Anat. Embryol. (Berl.) 152(3), 243–259 (1978).
    [Crossref] [PubMed]
  21. M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
    [Crossref] [PubMed]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  23. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  24. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [Crossref] [PubMed]
  25. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
    [Crossref] [PubMed]
  26. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
    [Crossref] [PubMed]
  27. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
    [Crossref] [PubMed]
  28. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
    [Crossref] [PubMed]
  29. I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
    [Crossref] [PubMed]
  30. G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
    [PubMed]
  31. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  32. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  33. J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
    [Crossref] [PubMed]
  34. J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
    [Crossref] [PubMed]
  35. M. Trottmann, S. Kolle, R. Leeb, D. Doering, S. Reese, C. G. Stief, K. Dulohery, M. Leavy, J. Kuznetsova, C. Homann, and R. Sroka, “Ex vivo investigations on the potential of optical coherence tomography (OCT) as a diagnostic tool for reproductive medicine in a bovine model,” J. Biophotonics (2015).
  36. M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
    [Crossref] [PubMed]
  37. S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
    [Crossref] [PubMed]
  38. L. M. Ittner and J. Götz, “Pronuclear injection for the production of transgenic mice,” Nat. Protoc. 2(5), 1206–1215 (2007).
    [Crossref] [PubMed]
  39. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
    [Crossref] [PubMed]
  40. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE press Bellingham, 2007), Vol. 642.
  41. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
    [Crossref] [PubMed]
  42. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press Bellingham, 2006).
  43. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
    [Crossref] [PubMed]
  44. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  45. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  46. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12(15), 3532–3542 (2004).
    [Crossref] [PubMed]

2015 (1)

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

2014 (2)

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

2013 (4)

F. Petraglia, G. I. Serour, and C. Chapron, “The changing prevalence of infertility,” Int. J. Gynaecol. Obstet. 123(Suppl 2), S4–S8 (2013).
[Crossref] [PubMed]

R. Shao, J. Hu, and H. Billig, “Toward understanding chlamydia infection-induced infertility caused by dysfunctional oviducts,” J. Infect. Dis. 208(4), 707–709 (2013).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
[Crossref] [PubMed]

2012 (6)

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
[Crossref] [PubMed]

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

C. A. Stewart and R. R. Behringer, “Mouse oviduct development,” Results Probl. Cell Differ. 55, 247–262 (2012).
[PubMed]

M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
[Crossref] [PubMed]

M. A. Fritz, “The modern infertility evaluation,” Clin. Obstet. Gynecol. 55(3), 692–705 (2012).
[Crossref] [PubMed]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

2010 (3)

S. Kölle, S. Reese, and W. Kummer, “New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging,” Theriogenology 73(6), 786–795 (2010).
[Crossref] [PubMed]

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

2009 (5)

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

G. Gonzalez and R. R. Behringer, “Dicer is required for female reproductive tract development and fertility in the mouse,” Mol. Reprod. Dev. 76(7), 678–688 (2009).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (2)

L. M. Ittner and J. Götz, “Pronuclear injection for the production of transgenic mice,” Nat. Protoc. 2(5), 1206–1215 (2007).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (2)

P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12(15), 3532–3542 (2004).
[Crossref] [PubMed]

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
[Crossref] [PubMed]

2003 (1)

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

2002 (1)

H. B. Croxatto, “Physiology of gamete and embryo transport through the fallopian tube,” Reprod. Biomed. Online 4(2), 160–169 (2002).
[Crossref] [PubMed]

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1998 (2)

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
[Crossref] [PubMed]

1994 (1)

M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
[Crossref] [PubMed]

1991 (2)

J. E. Ellington, “The bovine oviduct and its role in reproduction: a review of the literature,” Cornell Vet. 81(3), 313–328 (1991).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1987 (1)

S. S. Suarez, “Sperm transport and motility in the mouse oviduct: observations in situ,” Biol. Reprod. 36(1), 203–210 (1987).
[Crossref] [PubMed]

1983 (1)

M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
[Crossref] [PubMed]

1978 (1)

M. Komatsu and H. Fujita, “Electron-microscopic studies on the development and aging of the oviduct epithelium of mice,” Anat. Embryol. (Berl.) 152(3), 243–259 (1978).
[Crossref] [PubMed]

Aguirre, A.

An, L.

Aretz, H. T.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Behringer, R. R.

C. A. Stewart and R. R. Behringer, “Mouse oviduct development,” Results Probl. Cell Differ. 55, 247–262 (2012).
[PubMed]

G. Gonzalez and R. R. Behringer, “Dicer is required for female reproductive tract development and fertility in the mouse,” Mol. Reprod. Dev. 76(7), 678–688 (2009).
[Crossref] [PubMed]

Bezerra, H. G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Billig, H.

R. Shao, J. Hu, and H. Billig, “Toward understanding chlamydia infection-induced infertility caused by dysfunctional oviducts,” J. Infect. Dis. 208(4), 707–709 (2013).
[Crossref] [PubMed]

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Bylander, A.

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chapron, C.

F. Petraglia, G. I. Serour, and C. Chapron, “The changing prevalence of infertility,” Int. J. Gynaecol. Obstet. 123(Suppl 2), S4–S8 (2013).
[Crossref] [PubMed]

Chen, Y.

Costa, M. A.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Coughlin, A. J.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

Croxatto, H. B.

H. B. Croxatto, “Physiology of gamete and embryo transport through the fallopian tube,” Reprod. Biomed. Online 4(2), 160–169 (2002).
[Crossref] [PubMed]

Damjanov, I.

M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
[Crossref] [PubMed]

de la Maza, L. M.

S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
[Crossref] [PubMed]

DeJoseph Gauthier, D.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Dey, S. K.

H. Wang and S. K. Dey, “Roadmap to embryo implantation: clues from mouse models,” Nat. Rev. Genet. 7(3), 185–199 (2006).
[Crossref] [PubMed]

Dickinson, M. E.

Dixon, R. E.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Donchenko, E.

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

Doughman, Y. Q.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Dubielzig, S.

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Ellington, J. E.

J. E. Ellington, “The bovine oviduct and its role in reproduction: a review of the literature,” Cornell Vet. 81(3), 313–328 (1991).
[PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fine, J. L.

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fritz, M. A.

M. A. Fritz, “The modern infertility evaluation,” Clin. Obstet. Gynecol. 55(3), 692–705 (2012).
[Crossref] [PubMed]

Fujimori, T.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Fujita, H.

M. Komatsu and H. Fujita, “Electron-microscopic studies on the development and aging of the oviduct epithelium of mice,” Anat. Embryol. (Berl.) 152(3), 243–259 (1978).
[Crossref] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Garcia, M. D.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Goffinet, A. M.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Goksör, M.

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

Gonzalez, G.

G. Gonzalez and R. R. Behringer, “Dicer is required for female reproductive tract development and fertility in the mouse,” Mol. Reprod. Dev. 76(7), 678–688 (2009).
[Crossref] [PubMed]

Goodnow, J.

Götz, J.

L. M. Ittner and J. Götz, “Pronuclear injection for the production of transgenic mice,” Nat. Protoc. 2(5), 1206–1215 (2007).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gu, S.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Guagliumi, G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Halpern, E. F.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hennig, G. W.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Herrmann, J. M.

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Herz, P.

Hirao, M.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Houser, S. L.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Hu, J.

R. Shao, J. Hu, and H. Billig, “Toward understanding chlamydia infection-induced infertility caused by dysfunctional oviducts,” J. Infect. Dis. 208(4), 707–709 (2013).
[Crossref] [PubMed]

Hu, M.-W.

M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Hui, W.

S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
[Crossref] [PubMed]

Hwang, S. J.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Inman, C.

M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
[Crossref] [PubMed]

Ishida, S.

Ishikawa, H.

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

Ittner, L. M.

L. M. Ittner and J. Götz, “Pronuclear injection for the production of transgenic mice,” Nat. Protoc. 2(5), 1206–1215 (2007).
[Crossref] [PubMed]

Ivers, S.

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Jang, I. K.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Jenkins, M. W.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Kagemann, L.

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

Kampik, A.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Karunamuni, G.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Kauffman, C. R.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Kirillin, M.

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

Klein, T.

Kölle, S.

S. Kölle, S. Reese, and W. Kummer, “New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging,” Theriogenology 73(6), 786–795 (2010).
[Crossref] [PubMed]

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Komatsu, K.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Komatsu, M.

M. Komatsu and H. Fujita, “Electron-microscopic studies on the development and aging of the oviduct epithelium of mice,” Anat. Embryol. (Berl.) 152(3), 243–259 (1978).
[Crossref] [PubMed]

König, P.

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Koski, A.

Koyama, H.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Kummer, W.

S. Kölle, S. Reese, and W. Kummer, “New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging,” Theriogenology 73(6), 786–795 (2010).
[Crossref] [PubMed]

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Lamb, D. J.

M. M. Matzuk and D. J. Lamb, “The biology of infertility: research advances and clinical challenges,” Nat. Med. 14(11), 1197–1213 (2008).
[Crossref] [PubMed]

Larin, K. V.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

Larina, I. V.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

Larsson, D. G. J.

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

Lee, M. C.

M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
[Crossref] [PubMed]

Luo, W.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
[Crossref] [PubMed]

MacNeill, B. D.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
[Crossref] [PubMed]

Mashimo, H.

Matzuk, M. M.

M. M. Matzuk and D. J. Lamb, “The biology of infertility: research advances and clinical challenges,” Nat. Med. 14(11), 1197–1213 (2008).
[Crossref] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

Neubauer, A.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Nishizawa, N.

Noonan, A. I.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Nutu, M.

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Pal, S.

S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
[Crossref] [PubMed]

Panteleeva, O.

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

Petersen, C.

Peterson, E. M.

S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
[Crossref] [PubMed]

Petraglia, F.

F. Petraglia, G. I. Serour, and C. Chapron, “The changing prevalence of infertility,” Int. J. Gynaecol. Obstet. 123(Suppl 2), S4–S8 (2013).
[Crossref] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ramsey, K. H.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Reese, S.

S. Kölle, S. Reese, and W. Kummer, “New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging,” Theriogenology 73(6), 786–795 (2010).
[Crossref] [PubMed]

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Reznicek, L.

Rollins, A. M.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Sanders, K. M.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Schatten, H.

M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
[Crossref] [PubMed]

Schmitt, J.

Schripsema, J. H.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Schuman, J. S.

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Serour, G. I.

F. Petraglia, G. I. Serour, and C. Chapron, “The changing prevalence of infertility,” Int. J. Gynaecol. Obstet. 123(Suppl 2), S4–S8 (2013).
[Crossref] [PubMed]

Shakhova, N.

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

Shao, R.

R. Shao, J. Hu, and H. Billig, “Toward understanding chlamydia infection-induced infertility caused by dysfunctional oviducts,” J. Infect. Dis. 208(4), 707–709 (2013).
[Crossref] [PubMed]

Shi, D.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Shishkov, M.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Simon, D. I.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Singletary, K. W.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
[Crossref] [PubMed]

Southern, J. F.

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Stewart, C. A.

C. A. Stewart and R. R. Behringer, “Mouse oviduct development,” Results Probl. Cell Differ. 55, 247–262 (2012).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suarez, S. S.

S. S. Suarez, “Sperm transport and motility in the mouse oviduct: observations in situ,” Biol. Reprod. 36(1), 203–210 (1987).
[Crossref] [PubMed]

Sun, Q.-Y.

M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Syed, S.

Syed, S. H.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Tissir, F.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

Toyooka, Y.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Tuchin, V. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
[Crossref] [PubMed]

Tuffrey, M.

M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
[Crossref] [PubMed]

Uemura, T.

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Wan, Y. J.

M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
[Crossref] [PubMed]

Wang, H.

H. Wang and S. K. Dey, “Roadmap to embryo implantation: clues from mouse models,” Nat. Rev. Genet. 7(3), 185–199 (2006).
[Crossref] [PubMed]

Wang, R. K.

Wang, S.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

Wang, Z.-B.

M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
[Crossref] [PubMed]

Ward, M.

M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
[Crossref] [PubMed]

Ward, S. M.

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

Watanabe, M.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Wehrend, A.

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Wellander, R.

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

West, J. L.

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

Wieser, W.

Wojtkowski, M.

Wollstein, G.

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

Woods, C.

M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
[Crossref] [PubMed]

Wu, T. C.

M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
[Crossref] [PubMed]

Yabushita, H.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

Yunusova, E.

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

Zhu, D.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
[Crossref] [PubMed]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Anat. Embryol. (Berl.) (1)

M. Komatsu and H. Fujita, “Electron-microscopic studies on the development and aging of the oviduct epithelium of mice,” Anat. Embryol. (Berl.) 152(3), 243–259 (1978).
[Crossref] [PubMed]

Biol. Reprod. (3)

S. S. Suarez, “Sperm transport and motility in the mouse oviduct: observations in situ,” Biol. Reprod. 36(1), 203–210 (1987).
[Crossref] [PubMed]

R. E. Dixon, S. J. Hwang, G. W. Hennig, K. H. Ramsey, J. H. Schripsema, K. M. Sanders, and S. M. Ward, “Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct,” Biol. Reprod. 80(4), 665–673 (2009).
[Crossref] [PubMed]

S. Kölle, S. Dubielzig, S. Reese, A. Wehrend, P. König, and W. Kummer, “Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow,” Biol. Reprod. 81(2), 267–274 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Breast Cancer Res. Treat. (1)

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).
[Crossref] [PubMed]

Clin. Obstet. Gynecol. (1)

M. A. Fritz, “The modern infertility evaluation,” Clin. Obstet. Gynecol. 55(3), 692–705 (2012).
[Crossref] [PubMed]

Cornell Vet. (1)

J. E. Ellington, “The bovine oviduct and its role in reproduction: a review of the literature,” Cornell Vet. 81(3), 313–328 (1991).
[PubMed]

Dev. Dyn. (1)

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244, 607–618 (2014).
[PubMed]

Development (1)

D. Shi, K. Komatsu, M. Hirao, Y. Toyooka, H. Koyama, F. Tissir, A. M. Goffinet, T. Uemura, and T. Fujimori, “Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct,” Development 141(23), 4558–4568 (2014).
[Crossref] [PubMed]

Fertil. Steril. (1)

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography,” Fertil. Steril. 70(1), 155–158 (1998).
[Crossref] [PubMed]

Heart (1)

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89(3), 317–320 (2003).
[Crossref] [PubMed]

Histochemistry (1)

M. C. Lee, T. C. Wu, Y. J. Wan, and I. Damjanov, “Pregnancy-related changes in the mouse oviduct and uterus revealed by differential binding of fluoresceinated lectins,” Histochemistry 79(3), 365–375 (1983).
[Crossref] [PubMed]

Int. J. Gynaecol. Obstet. (1)

F. Petraglia, G. I. Serour, and C. Chapron, “The changing prevalence of infertility,” Int. J. Gynaecol. Obstet. 123(Suppl 2), S4–S8 (2013).
[Crossref] [PubMed]

J. Antimicrob. Chemother. (1)

M. Tuffrey, C. Woods, C. Inman, and M. Ward, “The effect of a single oral dose of azithromycin on chlamydial infertility and oviduct ultrastructure in mice,” J. Antimicrob. Chemother. 34(6), 989–999 (1994).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

M. Kirillin, O. Panteleeva, E. Yunusova, E. Donchenko, and N. Shakhova, “Criteria for pathology recognition in optical coherence tomography of fallopian tubes,” J. Biomed. Opt. 17(8), 081413 (2012).
[Crossref] [PubMed]

S. H. Syed, A. J. Coughlin, M. D. Garcia, S. Wang, J. L. West, K. V. Larin, and I. V. Larina, “Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research,” J. Biomed. Opt. 20(5), 051020 (2015).
[Crossref] [PubMed]

J. Genet. Genomics (1)

M.-W. Hu, Z.-B. Wang, H. Schatten, and Q.-Y. Sun, “New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout,” J. Genet. Genomics 39(2), 61–68 (2012).
[Crossref] [PubMed]

J. Infect. Dis. (1)

R. Shao, J. Hu, and H. Billig, “Toward understanding chlamydia infection-induced infertility caused by dysfunctional oviducts,” J. Infect. Dis. 208(4), 707–709 (2013).
[Crossref] [PubMed]

J. Med. Microbiol. (1)

S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” J. Med. Microbiol. 47(7), 599–605 (1998).
[Crossref] [PubMed]

JACC Cardiovasc. Interv. (1)

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Laser Photon Rev (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon Rev 7(5), 732–757 (2013).
[Crossref] [PubMed]

Mol. Reprod. Dev. (1)

G. Gonzalez and R. R. Behringer, “Dicer is required for female reproductive tract development and fertility in the mouse,” Mol. Reprod. Dev. 76(7), 678–688 (2009).
[Crossref] [PubMed]

Nat. Med. (3)

M. M. Matzuk and D. J. Lamb, “The biology of infertility: research advances and clinical challenges,” Nat. Med. 14(11), 1197–1213 (2008).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT),” Nat. Med. 17, 1010–1014 (2011).
[Crossref] [PubMed]

Nat. Protoc. (1)

L. M. Ittner and J. Götz, “Pronuclear injection for the production of transgenic mice,” Nat. Protoc. 2(5), 1206–1215 (2007).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Nat. Rev. Genet. (1)

H. Wang and S. K. Dey, “Roadmap to embryo implantation: clues from mouse models,” Nat. Rev. Genet. 7(3), 185–199 (2006).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

J. L. Fine, L. Kagemann, G. Wollstein, H. Ishikawa, and J. S. Schuman, “Direct Scanning of Pathology Specimens Using Spectral Domain Optical Coherence Tomography: A Pilot Study,” Ophthalmic Surg. Lasers Imaging 41(6), S58–S64 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Reprod. Biol. Endocrinol. (1)

A. Bylander, M. Nutu, R. Wellander, M. Goksör, H. Billig, and D. G. J. Larsson, “Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube,” Reprod. Biol. Endocrinol. 8(1), 48 (2010).
[Crossref] [PubMed]

Reprod. Biomed. Online (1)

H. B. Croxatto, “Physiology of gamete and embryo transport through the fallopian tube,” Reprod. Biomed. Online 4(2), 160–169 (2002).
[Crossref] [PubMed]

Results Probl. Cell Differ. (1)

C. A. Stewart and R. R. Behringer, “Mouse oviduct development,” Results Probl. Cell Differ. 55, 247–262 (2012).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Theriogenology (1)

S. Kölle, S. Reese, and W. Kummer, “New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging,” Theriogenology 73(6), 786–795 (2010).
[Crossref] [PubMed]

Other (4)

M. Trottmann, S. Kolle, R. Leeb, D. Doering, S. Reese, C. G. Stief, K. Dulohery, M. Leavy, J. Kuznetsova, C. Homann, and R. Sroka, “Ex vivo investigations on the potential of optical coherence tomography (OCT) as a diagnostic tool for reproductive medicine in a bovine model,” J. Biophotonics (2015).

R. H. F. Hunter, The Fallopian tubes: Their Role in Fertility and Infertility (Springer-Verlag, 1988).

V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press Bellingham, 2006).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE press Bellingham, 2007), Vol. 642.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for in vivo OCT imaging of the mouse oviduct. (A) Mouse preparation with reproductive organs exposed and stabilized for in vivo OCT imaging. (B) Optical microscope image of mouse reproductive organs, specifically ovary, oviduct and uterus as oriented for OCT imaging. (C) A schematic of the imaging OCT setup with the spectral-domain configuration.
Fig. 2
Fig. 2 OCT 3-D imaging of the mouse reproductive organs in vivo. (A) Three-dimensional OCT reconstruction of the mouse reproductive organs showing the external morphology of the ovary, the oviduct and the uterus. The dashed line represents the location for the cross-section shown in panel B. (B) Corresponding depth-resolved OCT cross-sectional image of the mouse reproductive organs showing the ovary, oviduct and uterus.
Fig. 3
Fig. 3 OCT three-dimensional imaging of the mouse ovary in vivo. (A) Three-dimensional OCT reconstruction of the ovary with detailed inner structures visible. The dashed lines indicate the locations of the depth-resolved cross-sectional views of the ovarian tissue. (B) Depth-resolved OCT cross-sectional image of the mouse ovary highlighting a corpus luteum, a Graffian follicle with ova, as well as a less mature follicle. (C) An additional depth-resolved OCT cross-sectional image of the ovary containing the corpus luteum and a pre-ovulatory follicle. All scale bars correspond to 200 μm.
Fig. 4
Fig. 4 In vivo OCT imaging of the oviduct ampulla that contains the oocytes and the cumulus cells. (A) Three-dimensional OCT reconstruction of the structure of ampulla. Longitudinal mucosa folds are clearly visible in the image. The dashed lines indicate the locations of the depth-resolved cross-sections of ampulla. (B)-(F) OCT depth-resolved cross-sectional views of the ampulla showing the mucosa folds, the oocytes, zona pellucidae, and the cumulus cells in the oviduct of live mouse. All scale bars correspond to 100 μm.
Fig. 5
Fig. 5 In vivo OCT imaging of the oviduct isthmus displays variable folding patterns. (A) Three-dimensional OCT reconstruction of the structure of the isthmus. The dashed lines indicate the locations of the depth-resolved cross-sections of oviduct. (B) Cross-sectional view of the inner lumen from the bottom surface. A solid red arrow indicates luminal, mucosal nodules arranged in longitudinal rows. Dashed arrows indicate ring-like transverse folding patterns. (C)-(F) OCT depth-resolved cross-sectional views of the oviduct showing the changes in mucosal structural patterns from longitudinal folds to nodules arranged in longitudinal rows, to transverse ring-like structures. All scale bars correspond to 200 μm.
Fig. 6
Fig. 6 Comparison of OCT images acquired in vivo to histological analysis of corresponding tissues. (A, C, E) Cross-sectional OCT images and (B, D, F) histology of the female reproductive tract. (A, B) Follicles in the ovary. (C, D) Images across the oviduct showing the folds in the lumen. (E, F) Cross-section along the oviduct showing the folds of the oviduct arranged in nodules. All scale bars correspond to 100 μm.

Metrics