Abstract

Several researchers studied the longitudinal chromatic aberration (LCA) of the human eye and observed that it does not change due to age. We measured the LCA of 45 subjects’ normal right eyes at three distinct wavelengths (561, 690, and 840 nm) using a Hartmann–Shack wavefront aberrometer (HSWA) while consecutively switching between three light sources for wavefront sensing. We confirmed that the LCA of the human eye does not change due to age between 22 and 57 years.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration

Bart Jaeken, Linda Lundström, and Pablo Artal
J. Opt. Soc. Am. A 28(9) 1871-1879 (2011)

Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

Maria Vinas, Carlos Dorronsoro, Daniel Cortes, Daniel Pascual, and Susana Marcos
Biomed. Opt. Express 6(3) 948-962 (2015)

Chromatic dispersions of the ocular media of human eyes

David A. Atchison and George Smith
J. Opt. Soc. Am. A 22(1) 29-37 (2005)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Bedford and G. Wyszecki, “Axial Chromatic Aberration of the Human Eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957).
    [Crossref] [PubMed]
  2. P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
    [Crossref] [PubMed]
  3. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
    [Crossref] [PubMed]
  4. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref] [PubMed]
  5. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [Crossref] [PubMed]
  6. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
    [Crossref] [PubMed]
  7. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
    [Crossref] [PubMed]
  8. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
    [Crossref] [PubMed]
  9. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
    [Crossref] [PubMed]
  10. G. Wyszecki and W. S. Stiles, Color Science (Wiley Interscience Publication, 2000)
  11. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [Crossref] [PubMed]
  12. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [Crossref] [PubMed]
  13. G. Wald and D. R. Griffin, “The Change in Refractive Power of the Human Eye in Dim and Bright Light,” J. Opt. Soc. Am. 37(5), 321–336 (1947).
    [Crossref] [PubMed]
  14. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref] [PubMed]
  15. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [Crossref] [PubMed]
  16. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
    [Crossref] [PubMed]
  17. W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
    [Crossref] [PubMed]
  18. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  19. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
    [Crossref] [PubMed]
  20. T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
    [Crossref] [PubMed]
  21. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
    [Crossref] [PubMed]
  22. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
    [PubMed]
  23. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17(10), 1697–1702 (2000).
    [Crossref] [PubMed]
  24. C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
    [Crossref] [PubMed]
  25. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
    [Crossref] [PubMed]
  26. M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
    [Crossref] [PubMed]
  27. J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
    [Crossref] [PubMed]
  28. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
    [PubMed]
  29. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16(26), 21199–21208 (2008).
    [Crossref] [PubMed]
  30. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
    [Crossref] [PubMed]
  31. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
    [Crossref] [PubMed]
  32. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
    [Crossref] [PubMed]
  33. S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
    [Crossref] [PubMed]
  34. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
    [PubMed]
  35. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [Crossref] [PubMed]
  36. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  37. J. H. Zar, Biostatistical Analysis (Prentice Hall 2010).
  38. R Core Team, (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ .
  39. N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
    [Crossref] [PubMed]
  40. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Near infrared ocular wavefront sensing with a femtosecond laser,” ARVO abstract 2836 (2004).
  41. Y. Le Grand, Form and Space Vision, rev. ed., translated by M. Millodot and G. Heath (Indiana University Press, Bloomington, Ind., 1967)
  42. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref] [PubMed]
  43. M. Takehana and L. Takemoto, “Quantitation of membrane-associated crystallins from aging and cataractous human lenses,” Invest. Ophthalmol. Vis. Sci. 28(5), 780–784 (1987).
    [PubMed]
  44. N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
    [Crossref] [PubMed]
  45. D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).
  46. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  47. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
    [Crossref] [PubMed]
  48. A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [Crossref] [PubMed]
  49. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
    [Crossref] [PubMed]
  50. R. H. H. Kröger, “Methods to estimate dispersion in vertebrate ocular media,” J. Opt. Soc. Am. A 9(9), 1486–1490 (1992).
    [Crossref] [PubMed]
  51. J. S. Larsen, “The sagittal growth of the eye. II. Ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty,” Acta Ophthalmol. (Copenh.) 49(3), 427–440 (1971).
    [Crossref] [PubMed]
  52. D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
    [PubMed]
  53. T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
    [Crossref] [PubMed]
  54. E. Fernández and W. Drexler, “Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography,” Opt. Express 13(20), 8184–8197 (2005).
    [Crossref] [PubMed]
  55. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20(24), 4152–4155 (1981).
    [Crossref] [PubMed]
  56. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
    [Crossref] [PubMed]
  57. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [Crossref] [PubMed]
  58. P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
    [Crossref] [PubMed]

2015 (1)

2013 (1)

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

2011 (1)

2008 (4)

2007 (1)

2006 (2)

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (4)

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

2003 (2)

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

2002 (7)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

2001 (3)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (3)

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

1998 (2)

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

1997 (1)

1995 (1)

1992 (3)

1991 (1)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

1988 (1)

1987 (1)

M. Takehana and L. Takemoto, “Quantitation of membrane-associated crystallins from aging and cataractous human lenses,” Invest. Ophthalmol. Vis. Sci. 28(5), 780–784 (1987).
[PubMed]

1985 (2)

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref] [PubMed]

1984 (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

1982 (1)

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
[Crossref] [PubMed]

1981 (1)

1976 (2)

M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

1971 (1)

J. S. Larsen, “The sagittal growth of the eye. II. Ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty,” Acta Ophthalmol. (Copenh.) 49(3), 427–440 (1971).
[Crossref] [PubMed]

1957 (1)

1947 (1)

Adams, A. J.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Adrian, W. K.

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

Ahmed, N.

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Artal, P.

Atchison, D. A.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Bedford, R. E.

Benito, A.

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[Crossref] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Benny, Y.

Berrio, E.

Bescós, J.

Bessho, K.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

Brunette, I.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

Bueno, J. M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Campbell, M. C. W.

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Canovas, C.

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Cense, B.

Charman, W. N.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Chisholm, W.

Choi, S. S.

Cortes, D.

Cox, I. G.

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

Dorronsoro, C.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Drexler, W.

Dubbelman, M.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Dubra, A.

Durán, S.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Fernández, E.

Fernández, E. J.

Friedman, N. E.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Fujikado, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

Furth, A. J.

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Fusaro, R. E.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Glasser, A.

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Griffin, D. R.

Guirao, A.

Hamam, H.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

Hammer, D. X.

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Hirohara, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Koh, S.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

Koretz, J. E.

Kröger, R. H. H.

Kuroda, T.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

Larsen, J. S.

J. S. Larsen, “The sagittal growth of the eye. II. Ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty,” Acta Ophthalmol. (Copenh.) 49(3), 427–440 (1971).
[Crossref] [PubMed]

Lidkea, B.

Llorente, L.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
[Crossref] [PubMed]

Maeda, N.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

Malik, N. S.

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Manzanera, S.

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

Meek, K. M.

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Mihashi, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

Miller, D. T.

Millodot, M.

M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref] [PubMed]

Moffat, B. A.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Mordi, J. A.

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Moss, S. J.

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Mutti, D. O.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref] [PubMed]

Ninomiya, S.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

Noojin, G. D.

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Oshika, T.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Parent, M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

Pascual, D.

Pérez-Merino, P.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Piers, P.

Pope, J. M.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Porter, J.

Powell, I.

Prieto, P. M.

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
[PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref] [PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Redondo, M.

Ribak, E. N.

Rockwell, B. A.

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Rynders, M.

Santamaría, J.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Semmlow, J. L.

Sholtz, R. I.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Simonet, P.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

Stolarski, D. J.

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Strenk, L. M.

Strenk, S. A.

Sulai, Y.

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Tabernero, J.

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[Crossref] [PubMed]

Takehana, M.

M. Takehana and L. Takemoto, “Quantitation of membrane-associated crystallins from aging and cataractous human lenses,” Invest. Ophthalmol. Vis. Sci. 28(5), 780–784 (1987).
[PubMed]

Takemoto, L.

M. Takehana and L. Takemoto, “Quantitation of membrane-associated crystallins from aging and cataractous human lenses,” Invest. Ophthalmol. Vis. Sci. 28(5), 780–784 (1987).
[PubMed]

Tano, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref] [PubMed]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

Thomas, R. J.

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Van der Heijde, G. L.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Vinas, M.

Wald, G.

Wall, R. S.

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Ware, C.

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
[Crossref] [PubMed]

Watanabe, H.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Welch, A. J.

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Werner, J. S.

Williams, D. R.

Wyszecki, G.

Ye, M.

Zadnik, K.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Zawadzki, R. J.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Zhang, X. X.

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

Zhang, Y.

Acta Ophthalmol. (Copenh.) (1)

J. S. Larsen, “The sagittal growth of the eye. II. Ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty,” Acta Ophthalmol. (Copenh.) 49(3), 427–440 (1971).
[Crossref] [PubMed]

Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. (1)

M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref] [PubMed]

Am. J. Ophthalmol. (3)

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Age-related changes in ocular and corneal aberrations,” Am. J. Ophthalmol. 138(1), 143–146 (2004).
[Crossref] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134(1), 1–9 (2002).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

Appl. Opt. (2)

Biochim. Biophys. Acta (1)

N. S. Malik, S. J. Moss, N. Ahmed, A. J. Furth, R. S. Wall, and K. M. Meek, “Ageing of the human corneal stroma: structural and biochemical changes,” Biochim. Biophys. Acta 1138(3), 222–228 (1992).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Graefes Arch. Clin. Exp. Ophthalmol. (1)

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Bessho, H. Watanabe, T. Fujikado, and Y. Tano, “Serial Measurements of Higher-Order Aberrations After Blinking in Normal Subjects,” Invest. Ophthalmol. Vis. Sci. 47(8), 3318–3324 (2006).
[Crossref] [PubMed]

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[Crossref] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in Corneal Wavefront Aberrations with Aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

M. Takehana and L. Takemoto, “Quantitation of membrane-associated crystallins from aging and cataractous human lenses,” Invest. Ophthalmol. Vis. Sci. 28(5), 780–784 (1987).
[PubMed]

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (11)

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref] [PubMed]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17(10), 1697–1702 (2000).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
[Crossref] [PubMed]

R. H. H. Kröger, “Methods to estimate dispersion in vertebrate ocular media,” J. Opt. Soc. Am. A 9(9), 1486–1490 (1992).
[Crossref] [PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
[Crossref] [PubMed]

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

J. Vis. (4)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

Opt. Express (4)

Optom. Vis. Sci. (2)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the Human Eye in Visible and Near Infrared Illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

Proc. SPIE 3591, Ophthalmic Technoloies IX (1)

D. X. Hammer, G. D. Noojin, R. J. Thomas, D. J. Stolarski, B. A. Rockwell, and A. J. Welch, “Ocular Dispersion,” Proc. SPIE 3591, Ophthalmic Technoloies IX 3291, 22–32 (1999).

Vision Res. (8)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[Crossref] [PubMed]

Other (5)

G. Wyszecki and W. S. Stiles, Color Science (Wiley Interscience Publication, 2000)

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Near infrared ocular wavefront sensing with a femtosecond laser,” ARVO abstract 2836 (2004).

Y. Le Grand, Form and Space Vision, rev. ed., translated by M. Millodot and G. Heath (Indiana University Press, Bloomington, Ind., 1967)

J. H. Zar, Biostatistical Analysis (Prentice Hall 2010).

R Core Team, (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schema of the HSWA used. PO is the λ/4 polarizer; PP is the plane plate for the shifting optical axis, OL is the objective lens, DM1 and DM2 are dichroic mirrors; PM1 and PM2 are plane mirrors; RP is the rotation prism; PBS is the polarizing beam splitter, BPF is the bandpass filter; L1–L4 are the lenses, LA is the lens array, AS is the shifted aperture stop, SLD is the superluminescent diode, CCD is used for anterior imaging, CMOS is used for wavefront sensing, and FT is the fixation target.
Fig. 2
Fig. 2 Layout of reflective artificial eye. The diffuser moves to adjust refraction of the artificial eye from −9 D to 0 D.
Fig. 3
Fig. 3 Standard deviations of SEs within subjects.
Fig. 4
Fig. 4 Standard deviations of LCA within subjects.
Fig. 5
Fig. 5 Circles are SEs for each wavelength. Each solid lines indicates one sequence. The circles in each sequence give the SE of 840, 690, and 561 nm from left to right. Triangles and dotted lines are pupil diameters over time. The top panel shows the results for an eye that had the largest SD among all the subjects. The bottom panel shows the results for an eye that had a relatively small SD.
Fig. 6
Fig. 6 Average LCA as functions of age.
Fig. 7
Fig. 7 Average LCA as functions of SE.
Fig. 8
Fig. 8 Regressions to Cauchy’s equation for our individual data (solid lines), all data (red line) and its extrapolate (red dashed line). All regressions were offset at 590 nm. Average and standard deviations of our data (red circles and black bars).
Fig. 9
Fig. 9 Regression with Cauchy’s equation for our data (red solid line) and its extrapolate (red dashed line). Average and standard deviations of our data (red circles and black bars). Atchison's regression with Cauchy's equation [36] (blue solid line) and extrapolation part (blue dashed line). Average and standard deviation of earlier or later Fernández et al. [29, 40] (green squares, yellow triangles, and black bars). Data sets were offset to match our fitting at 632.8 nm and 700 nm, respectively.
Fig. 10
Fig. 10 Regression with Cornu's equation for our data (red solid line) and its extrapolate (red dashed line). Average and standard deviations of our data (red circles and black bars). Atchison's regression with Cornu's equation [36] (blue solid line) and its extrapolate (blue dashed line). Atchison's regression was offset at 590 nm, at which point the value equals zero. Indiana's regression with Cornu's equation [14] (green solid line) and its extrapolate (green dashed line). Average and standard deviation of earlier or later Fernández et al. [29, 40] (green squares, yellow triangles, and black bars). Data sets were offset to match our fitting at 632.8 nm and 700 nm, respectively.
Fig. 11
Fig. 11 RMS of HOA for our results as a function of age, and the regression line (solid blue).
Fig. 12
Fig. 12 Polychromatic MTF simulation in which the ocular LCA equals + 1.0 D. Diffraction limit (black line) and simulation result (red line).
Fig. 13
Fig. 13 Polychromatic MTF simulation in which the ocular LCA equals + 1.1 D. Diffraction limit (black line) and simulation result (red line).

Tables (5)

Tables Icon

Table 1 Biometrics and data from all subjects (G: gender; m; male; f; female).

Tables Icon

Table 2 Correlation coefficients between pairs of variables. Pearson’s correlation coefficients are in the upper triangular matrix, and partial correlation coefficients are in the lower triangular matrix.

Tables Icon

Table 3 Coefficients of regressions for Cauchy’s equation.

Tables Icon

Table 4 Coefficients of regressions for Cornu's equation. The coefficient p of Atchison was modified to be offset at 590 nm, at which point the value is zero.

Tables Icon

Table 5 Comparisons between previous LCA results and our own, corresponding to each comparable spectral regions. Our results were calculated by our coefficients of Cauchy's equation.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S E = 4 3 C 2 0 r 2 ,
r ( x y ) = i = 1 N ( x i x ¯ ) ( y i y ¯ ) i = 1 N ( x i x ¯ ) 2 i = 1 N ( y i y ¯ ) 2 = S x y S x S y .
r ( x y k 1 ) = r ( x y ) r ( x k 1 ) r ( y k 1 ) 1 { r ( x k 1 ) } 2 1 { r ( y k 1 ) } 2 .
r ( x y k ) = r x y r x x r y y .
n ( λ ) = A + B λ 2 + C λ 4 + D λ 6 .
S E ( λ ) = A + B λ 2 + C λ 4 + D λ 6 .
S E ( λ ) = A + B λ 2 + C λ 4 ,
S E ( λ ) = p q λ c ,
standard error = m e a n S D n = m e a n S D 4 ,
μ L o w e r = m t ( φ , α ) × standard error = m 3.1825 × standard error , and
μ U p p e r = m + t ( φ , α ) × standard error = m + 3.1825 × standard error .

Metrics