Abstract

The in-vivo optical properties of the human head are investigated in the 600–1100 nm range on different subjects using continuous wave and time domain diffuse optical spectroscopy. The work was performed in collaboration with different research groups and the different techniques were applied to the same subject. Data analysis was carried out using homogeneous and layered models and final results were also confirmed by Monte Carlo simulations. The depth sensitivity of each technique was investigated and related to the probed region of the cerebral tissue. This work, based on different validated instruments, is a contribution to fill the existing gap between the present knowledge and the actual in-vivo values of the head optical properties.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo time-resolved reflectance spectroscopy of the human forehead

Daniela Comelli, Andrea Bassi, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, Rinaldo Cubeddu, Fabrizio Martelli, and Giovanni Zaccanti
Appl. Opt. 46(10) 1717-1725 (2007)

Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging

Alex H. Barnett, Joseph P. Culver, A. Gregory Sorensen, Anders Dale, and David A. Boas
Appl. Opt. 42(16) 3095-3108 (2003)

In vivo local determination of tissue optical properties: applications to human brain

Frédéric Bevilacqua, Dominique Piguet, Pierre Marquet, Jeffrey D. Gross, Bruce J. Tromberg, and Christian Depeursinge
Appl. Opt. 38(22) 4939-4950 (1999)

References

  • View by:
  • |
  • |
  • |

  1. D. Boas, “Welcome to neurophotonics,” Neurophoton 1, 10101 (2014).
    [Crossref]
  2. A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
    [Crossref]
  3. B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
    [Crossref]
  4. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85, 5163 (2014).
    [Crossref]
  5. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
    [Crossref] [PubMed]
  6. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
    [Crossref]
  7. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
    [Crossref]
  8. H. Ellis, “Anatomy of head injury,” Surgery 30, 99–101 (2012).
  9. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
    [Crossref] [PubMed]
  10. H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
    [Crossref]
  11. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
    [Crossref] [PubMed]
  12. A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45, 4747–4755 (2006).
    [Crossref] [PubMed]
  13. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–4144 (2002).
    [Crossref] [PubMed]
  14. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, 37–61 (2013).
    [Crossref]
  15. W. F. Cheong, S. S. Prahl, and A. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  16. P. Van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888454 (1993).
  17. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [Crossref] [PubMed]
  18. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [Crossref] [PubMed]
  19. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
    [Crossref] [PubMed]
  20. A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
    [Crossref] [PubMed]
  21. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [Crossref]
  22. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
    [Crossref] [PubMed]
  23. D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
    [Crossref] [PubMed]
  24. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [Crossref] [PubMed]
  25. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
    [Crossref]
  26. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42, 2881–2887 (2003).
    [Crossref] [PubMed]
  27. B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue,” PLoS One 8, e64095 (2013).
    [Crossref] [PubMed]
  28. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).
    [Crossref] [PubMed]
  29. I. Bargigia, A. Tosi, A. BahgatShehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66, 944–950 (2012).
    [Crossref] [PubMed]
  30. A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482–14487 (2007).
    [Crossref] [PubMed]
  31. A. Farina, I. Bargigia, E.-R. Janeček, Z. Walsh, C. D’Andrea, A. Nevin, M. Ramage, O. a. Scherman, and A. Pifferi, “Nondestructive optical detection of monomer uptake in wood polymer composites,” Opt. Lett. 39, 228–231 (2014).
    [Crossref] [PubMed]
  32. C. D’Andrea, E. A. Obraztsova, A. Farina, P. Taroni, G. Lanzani, and A. Pifferi, “Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods,” Appl. Opt. 51, 7858–7863 (2012).
    [Crossref]
  33. A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).
  34. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
    [Crossref] [PubMed]
  35. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
    [Crossref]
  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).
  37. F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).
    [Crossref] [PubMed]
  38. F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007).
    [Crossref] [PubMed]
  39. F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
    [Crossref] [PubMed]
  40. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. Van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37, 779 (1998).
    [Crossref]
  41. A. Sassaroli, F. Martelli, G. Zaccanti, and Y. Yamada, “Performance of Fitting Procedures in Curved Geometry for Retrieval of the Optical Properties of Tissue from Time-Resolved Measurements,” Appl. Opt. 40, 185–197 (2001).
    [Crossref]
  42. A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J. Opt. Soc. Am. A. Vis. 29, 2110–2117 (2012).
    [Crossref]
  43. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, Press Monographs (SPIE Press, Bellingham, WA, USA,2010).
    [Crossref]
  44. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
    [Crossref] [PubMed]
  45. J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
    [Crossref] [PubMed]
  46. A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
    [Crossref]
  47. J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
    [Crossref] [PubMed]
  48. Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).
    [Crossref]
  49. S. Kim and J. H. Lee, “Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch,” ETRI J. 27, 377–384 (2005).
    [Crossref]

2014 (7)

D. Boas, “Welcome to neurophotonics,” Neurophoton 1, 10101 (2014).
[Crossref]

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85, 5163 (2014).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

A. Farina, I. Bargigia, E.-R. Janeček, Z. Walsh, C. D’Andrea, A. Nevin, M. Ramage, O. a. Scherman, and A. Pifferi, “Nondestructive optical detection of monomer uptake in wood polymer composites,” Opt. Lett. 39, 228–231 (2014).
[Crossref] [PubMed]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
[Crossref] [PubMed]

2013 (3)

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue,” PLoS One 8, e64095 (2013).
[Crossref] [PubMed]

A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, 37–61 (2013).
[Crossref]

2012 (5)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

H. Ellis, “Anatomy of head injury,” Surgery 30, 99–101 (2012).

I. Bargigia, A. Tosi, A. BahgatShehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66, 944–950 (2012).
[Crossref] [PubMed]

C. D’Andrea, E. A. Obraztsova, A. Farina, P. Taroni, G. Lanzani, and A. Pifferi, “Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods,” Appl. Opt. 51, 7858–7863 (2012).
[Crossref]

A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J. Opt. Soc. Am. A. Vis. 29, 2110–2117 (2012).
[Crossref]

2011 (2)

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).
[Crossref] [PubMed]

2007 (3)

2006 (1)

2005 (3)

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).
[Crossref]

S. Kim and J. H. Lee, “Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch,” ETRI J. 27, 377–384 (2005).
[Crossref]

2004 (2)

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
[Crossref] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

2003 (4)

2002 (2)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–4144 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (2)

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[Crossref]

1999 (1)

1998 (2)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[Crossref] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. Van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37, 779 (1998).
[Crossref]

1997 (4)

1996 (1)

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
[Crossref] [PubMed]

1993 (2)

P. Van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888454 (1993).

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[Crossref] [PubMed]

1990 (1)

W. F. Cheong, S. S. Prahl, and A. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Ajichi, Y.

Araki, R.

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Arridge, S. R.

BahgatShehata, A.

Bargigia, I.

Barilli, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
[Crossref] [PubMed]

Barnett, A. H.

Bassi, A.

Bays, R.

Bevilacqua, F.

Boas, D.

D. Boas, “Welcome to neurophotonics,” Neurophoton 1, 10101 (2014).
[Crossref]

Boas, D. a.

Botwicz, M.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Chance, B.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

Cheong, W. F.

W. F. Cheong, S. S. Prahl, and A. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Chiarelli, A. M.

A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
[Crossref]

Choi, J.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Comelli, D.

Contini, D.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).
[Crossref] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[Crossref] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[Crossref] [PubMed]

Cubeddu, R.

Culver, J. P.

Custo, A.

D’Andrea, C.

Dale, A.

Dalla Mora, A.

Dehghani, H.

Del Bianco, S.

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–4144 (2002).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, Press Monographs (SPIE Press, Bellingham, WA, USA,2010).
[Crossref]

Della Frera, A.

Delpy, D. T.

Depeursinge, C.

Di Vacri, A.

A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
[Crossref]

Ding, H. S.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

Dögnitz, N.

Dubb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
[Crossref] [PubMed]

Durduran, T.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85, 5163 (2014).
[Crossref]

Ellis, H.

H. Ellis, “Anatomy of head injury,” Surgery 30, 99–101 (2012).

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[Crossref] [PubMed]

P. Van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888454 (1993).

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[Crossref] [PubMed]

Fang, Q.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
[Crossref] [PubMed]

Fantini, S.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue,” PLoS One 8, e64095 (2013).
[Crossref] [PubMed]

Farina, A.

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
[Crossref] [PubMed]

Firbank, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[Crossref] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[Crossref] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

Foschum, F.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).
[Crossref] [PubMed]

Franceschini, A.

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Fronczewska, K.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Fukui, Y.

Gong, H.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

Gratton, E.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Gross, J. D.

Gupta, R.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Hallacoglu, B.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue,” PLoS One 8, e64095 (2013).
[Crossref] [PubMed]

Hillman, E. M. C.

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[Crossref] [PubMed]

Hou, X. L.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

Hueber, D.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, Press Monographs (SPIE Press, Bellingham, WA, USA,2010).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, 37–61 (2013).
[Crossref]

Jäger, M.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).
[Crossref] [PubMed]

Janecek, E.-R.

Kacprzak, M.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Kaethner, J.

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Kienle, A.

Kim, S.

S. Kim and J. H. Lee, “Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch,” ETRI J. 27, 377–384 (2005).
[Crossref]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[Crossref] [PubMed]

Królicki, L.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Lanzani, G.

Lee, J. H.

S. Kim and J. H. Lee, “Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch,” ETRI J. 27, 377–384 (2005).
[Crossref]

Liebert, A.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Luo, Q.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

Maczewska, J.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Maniewski, R.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Mantulin, W.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Marquet, P.

Martelli, F.

A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J. Opt. Soc. Am. A. Vis. 29, 2110–2117 (2012).
[Crossref]

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007).
[Crossref] [PubMed]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–4144 (2002).
[Crossref] [PubMed]

A. Sassaroli, F. Martelli, G. Zaccanti, and Y. Yamada, “Performance of Fitting Procedures in Curved Geometry for Retrieval of the Optical Properties of Tissue from Time-Resolved Measurements,” Appl. Opt. 40, 185–197 (2001).
[Crossref]

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).
[Crossref] [PubMed]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, Press Monographs (SPIE Press, Bellingham, WA, USA,2010).
[Crossref]

MataPavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Mayzner-Zawadzka, E.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Merla, A.

A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
[Crossref]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Michalos, A.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Milej, D.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Nevin, A.

Obraztsova, E. A.

Ogden, T. M.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
[Crossref] [PubMed]

Ogoshi, Y.

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).
[Crossref]

Okada, E.

Onodera, Y.

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Patterson, M. S.

Pifferi, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

A. Farina, I. Bargigia, E.-R. Janeček, Z. Walsh, C. D’Andrea, A. Nevin, M. Ramage, O. a. Scherman, and A. Pifferi, “Nondestructive optical detection of monomer uptake in wood polymer composites,” Opt. Lett. 39, 228–231 (2014).
[Crossref] [PubMed]

I. Bargigia, A. Tosi, A. BahgatShehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66, 944–950 (2012).
[Crossref] [PubMed]

C. D’Andrea, E. A. Obraztsova, A. Farina, P. Taroni, G. Lanzani, and A. Pifferi, “Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods,” Appl. Opt. 51, 7858–7863 (2012).
[Crossref]

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482–14487 (2007).
[Crossref] [PubMed]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
[Crossref] [PubMed]

Piguet, D.

Polzonetti, C.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Prahl, S. S.

W. F. Cheong, S. S. Prahl, and A. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

Ramage, M.

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Romani, G. L.

A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
[Crossref]

Rozzi, P.

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Safonova, L. P.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Sassaroli, A.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue,” PLoS One 8, e64095 (2013).
[Crossref] [PubMed]

A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J. Opt. Soc. Am. A. Vis. 29, 2110–2117 (2012).
[Crossref]

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007).
[Crossref] [PubMed]

A. Sassaroli, F. Martelli, G. Zaccanti, and Y. Yamada, “Performance of Fitting Procedures in Curved Geometry for Retrieval of the Optical Properties of Tissue from Time-Resolved Measurements,” Appl. Opt. 40, 185–197 (2001).
[Crossref]

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Sawosz, P.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Scherman, O. a.

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Schweiger, M.

Selb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
[Crossref] [PubMed]

Selbeck, J.

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[Crossref] [PubMed]

Sorensen, A. G.

Spinelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Sun, B.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

Sun, J.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

Taddeucci, A.

Tanaka, K.

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Tanikawa, Y.

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Taroni, P.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

Toronov, V.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Torricelli, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
[Crossref] [PubMed]

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Tosi, A.

Tromberg, B. J.

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Valentini, G.

Van den Bergh, H.

Van der Zee, P.

P. Van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888454 (1993).

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

Wagnières, G.

Walsh, Z.

Weigl, W.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

Welch, A. A.

W. F. Cheong, S. S. Prahl, and A. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Wells, W. M.

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

Yamada, Y.

A. Sassaroli, F. Martelli, G. Zaccanti, and Y. Yamada, “Performance of Fitting Procedures in Curved Geometry for Retrieval of the Optical Properties of Tissue from Time-Resolved Measurements,” Appl. Opt. 40, 185–197 (2001).
[Crossref]

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Yodh, A. G.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85, 5163 (2014).
[Crossref]

Zaccanti, G.

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007).
[Crossref] [PubMed]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29, 2037–2039 (2004).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–4144 (2002).
[Crossref] [PubMed]

A. Sassaroli, F. Martelli, G. Zaccanti, and Y. Yamada, “Performance of Fitting Procedures in Curved Geometry for Retrieval of the Optical Properties of Tissue from Time-Resolved Measurements,” Appl. Opt. 40, 185–197 (2001).
[Crossref]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).
[Crossref] [PubMed]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, Press Monographs (SPIE Press, Bellingham, WA, USA,2010).
[Crossref]

Zappa, F.

Zhang, L.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

Zhao, J.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

Zhou, C. L.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Zude, M.

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

Appl. Opt. (13)

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[Crossref] [PubMed]

A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45, 4747–4755 (2006).
[Crossref] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[Crossref]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
[Crossref] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[Crossref] [PubMed]

A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
[Crossref]

Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42, 2881–2887 (2003).
[Crossref] [PubMed]

C. D’Andrea, E. A. Obraztsova, A. Farina, P. Taroni, G. Lanzani, and A. Pifferi, “Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods,” Appl. Opt. 51, 7858–7863 (2012).
[Crossref]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).
[Crossref] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. Van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37, 779 (1998).
[Crossref]

A. Sassaroli, F. Martelli, G. Zaccanti, and Y. Yamada, “Performance of Fitting Procedures in Curved Geometry for Retrieval of the Optical Properties of Tissue from Time-Resolved Measurements,” Appl. Opt. 40, 185–197 (2001).
[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

ETRI J. (1)

S. Kim and J. H. Lee, “Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch,” ETRI J. 27, 377–384 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. S. Prahl, and A. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

J. Biomed. Opt. (5)

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16, 046011 (2011).
[Crossref] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221 (2004).
[Crossref] [PubMed]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117 (1996).
[Crossref] [PubMed]

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10, 024028 (2005).
[Crossref] [PubMed]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. a. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19, 16010 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. Vis. (1)

A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J. Opt. Soc. Am. A. Vis. 29, 2110–2117 (2012).
[Crossref]

Neuroimage (6)

A. M. Chiarelli, A. Di Vacri, G. L. Romani, and A. Merla, “Fast optical signal in visual cortex: improving detection by general linear convolution model,” Neuroimage 66, 194–202 (2013).
[Crossref]

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85, 5163 (2014).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. MataPavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Neurophoton (1)

D. Boas, “Welcome to neurophotonics,” Neurophoton 1, 10101 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (2)

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).
[Crossref]

A. Sassaroli, F. Martelli, Y. Tanikawa, K. Tanaka, R. Araki, Y. Onodera, and Y. Yamada, “Time-Resolved Measurements of in vivo Optical Properties of Piglet Brain,” Opt. Rev. 7, 420–425 (2000).
[Crossref]

Phys. Med. Biol. (6)

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007).
[Crossref] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[Crossref] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[Crossref] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–4144 (2002).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, 37–61 (2013).
[Crossref]

PLoS One (1)

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue,” PLoS One 8, e64095 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

P. Van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888454 (1993).

Rev. Sci. Instrum. (1)

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).
[Crossref] [PubMed]

Surgery (1)

H. Ellis, “Anatomy of head injury,” Surgery 30, 99–101 (2012).

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

Other (3)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” in “Int. Conf. Agric. Eng.”, (Valencia, 2012).

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, Press Monographs (SPIE Press, Bellingham, WA, USA,2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setups: a) Continuous-wave camera-based system (CW-camera), b) Time-resolved broadband spectroscopy system (TR-spectr), c) Discrete wavelength time-resolved spectroscopy system (TR-discr), d) Single wavelength time-resolved system (TR-single).
Fig. 2
Fig. 2 CW-camera system: retrieved absorption (a) and reduced scattering spectra (b) for 9 volunteers.
Fig. 3
Fig. 3 TR-spectr system: retrieved absorption (a) and reduced scattering spectra (b) for 9 volunteers.
Fig. 4
Fig. 4 TR-discr system: retrieved absorption and reduced scattering spectra for 9 volunteers. (a) and (c) represent the absorption for the upper and lower layer, respectively. (b) and (d) represent the reduced scattering for the upper and lower layer, respectively.
Fig. 5
Fig. 5 Median absorption (a) and reduced scattering spectra (b) among 9 subjects. Bars refer to the 25th and 75 percentile limits.
Fig. 6
Fig. 6 CW-homo: case 1 (left column) and case 2 (right column).
Fig. 7
Fig. 7 TR-homo: reflectance at 2 cm interfiber distance. Case 1 (left column) and case 2 (right column).
Fig. 8
Fig. 8 TR-homo: reflectance at 9 cm interfiber distance. Case 1 (left column) and case 2 (right column).
Fig. 9
Fig. 9 TR-2L: case 1 (left column) and case 2 (right column).
Fig. 10
Fig. 10 Schematic of the comparison between measurements and simulations. Colored bubbles represents a possible estimate on the volume probed by the measurements performed using the technique/data analysis in the column header.

Tables (2)

Tables Icon

Table 1 Measurement protocol.

Tables Icon

Table 2 Reduced scattering coefficients and thicknesses for the three layers used for MC simulations.

Metrics