Abstract

Inflammation is a non-specific immune response to injury intended to protect biological tissue from harmful stimuli such as pathogens, irritants, and damaged cells. In vivo optical tissue imaging has been used to provide spatial and dynamic characteristics of inflammation within the tissue. In this paper, we report in vivo visualization of inflammation in the skin at both cellular and physiological levels by using a combination of label-free two-photon microscopy (TPM) and optical coherence tomography (OCT). Skin inflammation was induced by topically applying lipopolysaccharide (LPS) on the mouse ear. Temporal OCT imaging visualized tissue swelling, vasodilation, and increased capillary density 30 min and 1 hour after application. TPM imaging showed immune cell migration within the inflamed skin. Combined OCT and TPM was applied to obtain complementary information from each modality in the same region of interest. The information provided by each modality were consistent with previous reports about the characteristics of inflammation. Therefore, the combination of OCT and TPM holds potential for studying inflammation of the skin.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure

Benedikt W. Graf, Eric J. Chaney, Marina Marjanovic, Michael De Lisio, Maria C. Valero, Marni D. Boppart, and Stephen A. Boppart
Biomed. Opt. Express 4(10) 1817-1828 (2013)

Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence

Chunqiang Li, Riikka K. Pastila, Costas Pitsillides, Judith M. Runnels, Mehron Puoris’haag, Daniel Côté, and Charles P. Lin
Opt. Express 18(2) 988-999 (2010)

Combined two-photon microscopy and optical coherence tomography using individually optimized sources

Bosu Jeong, Byunghak Lee, Min Seong Jang, Hyoseok Nam, Sang June Yoon, Taejun Wang, Junsang Doh, Bo-Gie Yang, Myoung Ho Jang, and Ki Hean Kim
Opt. Express 19(14) 13089-13096 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Gad, “The mouse ear swelling test (MEST) in the 1990s,” Toxicology 93(1), 33–46 (1994).
    [Crossref] [PubMed]
  2. D. A. Basketter and E. W. Scholes, “Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens,” Food Chem. Toxicol. 30(1), 65–69 (1992).
    [Crossref] [PubMed]
  3. V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
    [Crossref] [PubMed]
  4. K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
    [Crossref] [PubMed]
  5. V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
    [Crossref] [PubMed]
  6. V. V. Kalchenko, Y. L. Kuznetsov, and I. V. Meglinski, “Visualisation of blood and lymphatic vessels with increasing exposure time of the detector,” Quantum Electron. 43(7), 679–682 (2013).
    [Crossref]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  8. Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
    [Crossref] [PubMed]
  9. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
    [Crossref] [PubMed]
  10. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
    [Crossref] [PubMed]
  11. S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
    [Crossref] [PubMed]
  12. T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
    [Crossref] [PubMed]
  13. E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
    [Crossref] [PubMed]
  14. K. Gronert, S. P. Colgan, and C. N. Serhan, “Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation,” J. Pharmacol. Exp. Ther. 285(1), 252–261 (1998).
    [PubMed]
  15. S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
    [Crossref] [PubMed]
  16. A. D. Luster, R. Alon, and U. H. von Andrian, “Immune cell migration in inflammation: present and future therapeutic targets,” Nat. Immunol. 6(12), 1182–1190 (2005).
    [Crossref] [PubMed]
  17. C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
    [Crossref] [PubMed]
  18. B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
    [Crossref] [PubMed]
  19. D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
    [Crossref] [PubMed]
  20. A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
    [Crossref] [PubMed]
  21. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
    [Crossref] [PubMed]
  22. Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
    [Crossref] [PubMed]
  23. L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
    [Crossref] [PubMed]
  24. S. H. Diks, S. J. van Deventer, and M. P. Peppelenbosch, “Lipopolysaccharide recognition, internalisation, signalling and other cellular effects,” J. Endotoxin Res. 7(5), 335–348 (2001).
    [PubMed]
  25. P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
    [Crossref] [PubMed]
  26. B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon, T. Wang, J. Doh, B. G. Yang, M. H. Jang, and K. H. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
    [Crossref] [PubMed]
  27. B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
    [Crossref] [PubMed]
  28. A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
    [Crossref] [PubMed]
  29. M. T. Tsai, F. Y. Chang, C. K. Lee, C. S. Gong, Y. X. Lin, J. D. Lee, C. H. Yang, and H. L. Liu, “Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography,” Biomed. Opt. Express 5(7), 2009–2022 (2014).
    [Crossref] [PubMed]
  30. D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
    [Crossref] [PubMed]

2014 (3)

2013 (6)

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

V. V. Kalchenko, Y. L. Kuznetsov, and I. V. Meglinski, “Visualisation of blood and lymphatic vessels with increasing exposure time of the detector,” Quantum Electron. 43(7), 679–682 (2013).
[Crossref]

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

2012 (3)

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

2011 (3)

B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon, T. Wang, J. Doh, B. G. Yang, M. H. Jang, and K. H. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
[Crossref] [PubMed]

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

2010 (2)

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

2009 (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

2008 (1)

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

2007 (1)

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

2006 (1)

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

2005 (1)

A. D. Luster, R. Alon, and U. H. von Andrian, “Immune cell migration in inflammation: present and future therapeutic targets,” Nat. Immunol. 6(12), 1182–1190 (2005).
[Crossref] [PubMed]

2001 (1)

S. H. Diks, S. J. van Deventer, and M. P. Peppelenbosch, “Lipopolysaccharide recognition, internalisation, signalling and other cellular effects,” J. Endotoxin Res. 7(5), 335–348 (2001).
[PubMed]

2000 (1)

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

1998 (2)

K. Gronert, S. P. Colgan, and C. N. Serhan, “Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation,” J. Pharmacol. Exp. Ther. 285(1), 252–261 (1998).
[PubMed]

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

1994 (1)

S. C. Gad, “The mouse ear swelling test (MEST) in the 1990s,” Toxicology 93(1), 33–46 (1994).
[Crossref] [PubMed]

1993 (1)

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

1992 (1)

D. A. Basketter and E. W. Scholes, “Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens,” Food Chem. Toxicol. 30(1), 65–69 (1992).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Alex, A.

Alon, R.

A. D. Luster, R. Alon, and U. H. von Andrian, “Immune cell migration in inflammation: present and future therapeutic targets,” Nat. Immunol. 6(12), 1182–1190 (2005).
[Crossref] [PubMed]

Aoshi, T.

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

Arita, M.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

Asfaha, S.

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Basketter, D. A.

D. A. Basketter and E. W. Scholes, “Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens,” Food Chem. Toxicol. 30(1), 65–69 (1992).
[Crossref] [PubMed]

Blatter, C.

Blessenohl, M.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Brady, H. R.

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

Campbell, E. L.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

Canny, G. O.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

Chang, F. Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chico-Calero, I.

Choudhury, N.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Chung, E.

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

Clish, C. B.

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

Colgan, S. P.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

K. Gronert, S. P. Colgan, and C. N. Serhan, “Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation,” J. Pharmacol. Exp. Ther. 285(1), 252–261 (1998).
[PubMed]

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

Côté, D.

Delp-Archer, C.

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

Diks, S. H.

S. H. Diks, S. J. van Deventer, and M. P. Peppelenbosch, “Lipopolysaccharide recognition, internalisation, signalling and other cellular effects,” J. Endotoxin Res. 7(5), 335–348 (2001).
[PubMed]

Doh, J.

Drexler, W.

Dziennis, S.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Gad, S. C.

S. C. Gad, “The mouse ear swelling test (MEST) in the 1990s,” Toxicology 93(1), 33–46 (1994).
[Crossref] [PubMed]

Gebert, A.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Gelman, A. E.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Godson, C.

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

Gong, C. S.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gronert, K.

K. Gronert, S. P. Colgan, and C. N. Serhan, “Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation,” J. Pharmacol. Exp. Ther. 285(1), 252–261 (1998).
[PubMed]

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

Grosberg, L. E.

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

Harmelin, A.

V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

Harvey, K.

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hillman, E. M.

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

Hogg, N.

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Huettmann, G.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Huss, H. T.

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

Hwang, S.

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

Jacques, S. L.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Jang, M. H.

Jang, M. S.

Jeong, B.

Joo, C.

Joo, Y.

Jung, Y.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

Kalchenko, V.

V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

Kalchenko, V. V.

V. V. Kalchenko, Y. L. Kuznetsov, and I. V. Meglinski, “Visualisation of blood and lymphatic vessels with increasing exposure time of the detector,” Quantum Electron. 43(7), 679–682 (2013).
[Crossref]

Kim, B.

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

Kim, K. H.

Kim, S.

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

Klinger, A.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Konerding, M.

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

Koop, N.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Kreisel, D.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Krupnick, A. S.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Kulesz-Martin, M.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Kuznetsov, Y.

V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

Kuznetsov, Y. L.

V. V. Kalchenko, Y. L. Kuznetsov, and I. V. Meglinski, “Visualisation of blood and lymphatic vessels with increasing exposure time of the detector,” Quantum Electron. 43(7), 679–682 (2013).
[Crossref]

Lagowski, J.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Lai, J.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Lee, B.

Lee, C. K.

Lee, J. D.

Leitgeb, R. A.

Levitz, D.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Li, C.

Li, Q.

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

Li, W.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Lin, C. P.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, Y. X.

Liu, H. L.

Louis, N. A.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

Luster, A. D.

A. D. Luster, R. Alon, and U. H. von Andrian, “Immune cell migration in inflammation: present and future therapeutic targets,” Nat. Immunol. 6(12), 1182–1190 (2005).
[Crossref] [PubMed]

Lynch, J. N.

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

Madara, J. L.

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

Meglinski, I.

V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

Meglinski, I. V.

V. V. Kalchenko, Y. L. Kuznetsov, and I. V. Meglinski, “Visualisation of blood and lymphatic vessels with increasing exposure time of the detector,” Quantum Electron. 43(7), 679–682 (2013).
[Crossref]

Mentzer, S. J.

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

Miller, M. J.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

Mitchell, S.

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Nam, A. S.

Nam, H.

Nam, J.

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

Nava, R. G.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Orzekowsky-Schroeder, R.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Parkos, C. A.

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

Pastila, R. K.

Peppelenbosch, M. P.

S. H. Diks, S. J. van Deventer, and M. P. Peppelenbosch, “Lipopolysaccharide recognition, internalisation, signalling and other cellular effects,” J. Endotoxin Res. 7(5), 335–348 (2001).
[PubMed]

Petasis, N.

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

Petasis, N. A.

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

Phillips, K. G.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Pitsillides, C.

Pless, R.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Pratt, J. P.

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

Preise, D.

V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Puoris’haag, M.

Qin, J.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Qu, J. Y.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Radosevich, A. J.

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

Ravnic, D. J.

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

Reif, R.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

Runnels, J. M.

Scholes, E. W.

D. A. Basketter and E. W. Scholes, “Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens,” Food Chem. Toxicol. 30(1), 65–69 (1992).
[Crossref] [PubMed]

Schueth, A.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Serhan, C. N.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

K. Gronert, S. P. Colgan, and C. N. Serhan, “Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation,” J. Pharmacol. Exp. Ther. 285(1), 252–261 (1998).
[PubMed]

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

Song, J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Sun, Q.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanzey, E.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Takano, T.

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Teh, S. K.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Tomassetti, S. E.

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

Tsai, M. T.

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Vakoc, B. J.

A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
[Crossref] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

van Deventer, S. J.

S. H. Diks, S. J. van Deventer, and M. P. Peppelenbosch, “Lipopolysaccharide recognition, internalisation, signalling and other cellular effects,” J. Endotoxin Res. 7(5), 335–348 (2001).
[PubMed]

von Andrian, U. H.

A. D. Luster, R. Alon, and U. H. von Andrian, “Immune cell migration in inflammation: present and future therapeutic targets,” Nat. Immunol. 6(12), 1182–1190 (2005).
[Crossref] [PubMed]

von Smolinski, D.

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Wang, B.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Wang, R. K.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Wang, T.

Wang, T. C.

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

Wang, T. J.

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

Wang, Y.

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

Weingast, J.

Wen, Z.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Wieser, W.

Wolloscheck, T.

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

Xiao, P.

Yan, B.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Yang, B. G.

Yang, C. H.

Yoon, S. J.

Yousefi, S.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Zeng, Y.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Zhang, W.

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

Zhang, X.

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

Zheng, Y.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

Zhi, Z.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

Zinselmeyer, B. H.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

FASEB J. (1)

E. L. Campbell, N. A. Louis, S. E. Tomassetti, G. O. Canny, M. Arita, C. N. Serhan, and S. P. Colgan, “Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution,” FASEB J. 21(12), 3162–3170 (2007).
[Crossref] [PubMed]

Food Chem. Toxicol. (1)

D. A. Basketter and E. W. Scholes, “Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens,” Food Chem. Toxicol. 30(1), 65–69 (1992).
[Crossref] [PubMed]

Histochem. Cell Biol. (1)

A. Klinger, R. Orzekowsky-Schroeder, D. von Smolinski, M. Blessenohl, A. Schueth, N. Koop, G. Huettmann, and A. Gebert, “Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy,” Histochem. Cell Biol. 137(3), 269–278 (2012).
[Crossref] [PubMed]

Inflamm. Res. (1)

B. H. Zinselmeyer, J. N. Lynch, X. Zhang, T. Aoshi, and M. J. Miller, “Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation,” Inflamm. Res. 57(3), 93–96 (2008).
[Crossref] [PubMed]

J. Anat. (1)

D. J. Ravnic, M. Konerding, J. P. Pratt, T. Wolloscheck, H. T. Huss, and S. J. Mentzer, “Inflammation-responsive focal constrictors in the mouse ear microcirculation,” J. Anat. 209(6), 807–816 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

Y. Zeng, B. Yan, Q. Sun, S. K. Teh, W. Zhang, Z. Wen, and J. Y. Qu, “Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence,” J. Biomed. Opt. 18(4), 040504 (2013).
[Crossref] [PubMed]

B. Kim, T. J. Wang, Q. Li, J. Nam, S. Hwang, E. Chung, S. Kim, and K. H. Kim, “Combined two-photon microscopy and angiographic optical coherence tomography,” J. Biomed. Opt. 18(8), 080502 (2013).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, D. Preise, I. Meglinski, and A. Harmelin, “Ear swelling test by using laser speckle imaging with a long exposure time,” J. Biomed. Opt. 19(6), 060502 (2014).
[Crossref] [PubMed]

K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, “Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin,” J. Biomed. Opt. 16(4), 040503 (2011).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

J. Clin. Invest. (2)

T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan, “Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues,” J. Clin. Invest. 101(4), 819–826 (1998).
[Crossref] [PubMed]

S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara, “Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers,” J. Clin. Invest. 92(1), 75–82 (1993).
[Crossref] [PubMed]

J. Endotoxin Res. (1)

S. H. Diks, S. J. van Deventer, and M. P. Peppelenbosch, “Lipopolysaccharide recognition, internalisation, signalling and other cellular effects,” J. Endotoxin Res. 7(5), 335–348 (2001).
[PubMed]

J. Immunol. (1)

C. Godson, S. Mitchell, K. Harvey, N. A. Petasis, N. Hogg, and H. R. Brady, “Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages,” J. Immunol. 164(4), 1663–1667 (2000).
[Crossref] [PubMed]

J. Pharmacol. Exp. Ther. (1)

K. Gronert, S. P. Colgan, and C. N. Serhan, “Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation,” J. Pharmacol. Exp. Ther. 285(1), 252–261 (1998).
[PubMed]

Nat. Immunol. (1)

A. D. Luster, R. Alon, and U. H. von Andrian, “Immune cell migration in inflammation: present and future therapeutic targets,” Nat. Immunol. 6(12), 1182–1190 (2005).
[Crossref] [PubMed]

Nat. Med. (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

PLoS ONE (2)

L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011).
[Crossref] [PubMed]

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS ONE 8(2), e57976 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang, J. Lai, R. Pless, A. E. Gelman, A. S. Krupnick, and M. J. Miller, “In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 18073–18078 (2010).
[Crossref] [PubMed]

Quantum Electron. (1)

V. V. Kalchenko, Y. L. Kuznetsov, and I. V. Meglinski, “Visualisation of blood and lymphatic vessels with increasing exposure time of the detector,” Quantum Electron. 43(7), 679–682 (2013).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Toxicology (1)

S. C. Gad, “The mouse ear swelling test (MEST) in the 1990s,” Toxicology 93(1), 33–46 (1994).
[Crossref] [PubMed]

Supplementary Material (6)

NameDescription
» Visualization 1: MOV (6296 KB)     
» Visualization 2: MOV (9271 KB)     
» Visualization 3: MOV (9153 KB)     
» Visualization 4: MOV (12335 KB)     
» Visualization 5: MOV (8806 KB)     
» Visualization 6: MOV (10573 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structural and angiographic OCT images before and after induction of inflammation taken at 30 min intervals (a, d: untreated, b, e: 30 min, c, f: 1 h) show progression of tissue swelling and vasodilation. Structural OCT images are presented as cross sectional views (a-c). The position of these images are indicated by red dashed lines on the angiographic OCT images (d-f). The blue arrows point to the cartilage. (Scale bar: 1 mm).

Fig. 2
Fig. 2

TPM images of the mouse ear at two different fixed depth at different times show vasodilation as a result of inflammation. Approximately 38% capillary vasodilation occurred between 0 h (a, c) and 1 h (b, d) images. In both (b, d) the overall background noise has increased, which seems to be caused by increased light scattering due to tissue swelling from plasma leakage. Colored arrows indicate the location of blood vessels (Scale bar: 100 μm) (Visualization 1, Visualization 2).

Fig. 3
Fig. 3

Autofluorescence TPM (40 min time lapse) images of the inflammation response in untreated sample (a), (Visualization 3) and 1 h after LPS treatment (b), (Visualization 4) demonstrate immune cell migration post-treatment. Each line in (b) represents the path of immune cell migration. Time sequence images of the boxed region in (b) is shown in (c) with enhanced contrast. A selected immune cell is indicated by an arrow. From top to bottom the scale bar is 100 μm and 30 μm, respectively.

Fig. 4
Fig. 4

(a-c), (d-f) and (g-i) are images of the same location taken by structural OCT, angiographic OCT, and TPM, which show the progression of vasodilation, tissue swelling, and immune cell migration, respectively. From left to right they are displayed by increasing time: untreated (a, d, g), 1 h (b, e, h) and 2 h after LPS treatment. Dashed red lines in enface angiographic OCT images (a-c) indicate the cross sectional location of the structural OCT image (d-f) and dashed orange squares indicate the FOV of TPM images (g-i, Visualization 5, Visualization 6). Yellow arrowheads in (i) point to the active immune cells. Figure 4(j) is a maximum intensity projection that displays the path taken by the immune cells in 4i followed by a time sequence of select neutrophil movement. The selected immune cells are marked by blue and yellow arrows. From top to bottom, the scale bars are 200, 200, 100, 50, and 20 μm, respectively.

Metrics