Abstract

We developed an improved dual band dual focus spectral domain optical coherence tomography (SD-OCT) for in vivo 2D/3D imaging of the whole eye segment, including the whole anterior segment and retina. The system featured two OCT channels with two different bands centered at 840 nm and 1050 nm, which were designed to image the retina and the anterior segments of the eye, respectively. By combing the two probe light beams for co-axial scanning and separating them for focusing at different segments of the eye with a combination of three dichroic mirrors, we not only minimized the loss of the backscattered light from the sample but also improved the imaging depth, scan range and resolution. The full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging, with which an imaging depth of 36.71 mm in air was achieved. We demonstrated that this system was capable of measuring the dynamic changes of ocular dimensions, including the asphericity of the cornea and lens, during accommodation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual channel dual focus optical coherence tomography for imaging accommodation of the eye

Chuanqing Zhou, Jianhua Wang, and Shuliang Jiao
Opt. Express 17(11) 8947-8955 (2009)

Optical coherence tomography for whole eye segment imaging

Cuixia Dai, Chuanqing Zhou, Shanhui Fan, Zhe Chen, Xinyu Chai, Qiushi Ren, and Shuliang Jiao
Opt. Express 20(6) 6109-6115 (2012)

Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range

Cuixia Dai, Shanhui Fan, Xinyu Chai, Yan Li, Qiushi Ren, Peng Xi, and Chuanqing Zhou
Appl. Opt. 53(24) 5375-5379 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
    [Crossref] [PubMed]
  2. J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28(6), 1097–1102 (1989).
    [Crossref] [PubMed]
  3. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
    [Crossref] [PubMed]
  4. H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
    [Crossref] [PubMed]
  5. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref] [PubMed]
  6. M. Restori, “Imaging the vitreous: optical coherence tomography and ultrasound imaging,” Eye (Lond.) 22(10), 1251–1256 (2008).
    [Crossref] [PubMed]
  7. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer, 2008).
  8. G. Hausler and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [Crossref] [PubMed]
  9. J. Zhang, P. Wang, and Z. Chen, “Long imaging range optical coherence tomography based on a narrow line-width dual band Fourier domain mode-locked swept source,” Proc. SPIE 7889, 78892P (2011).
  10. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
    [Crossref] [PubMed]
  11. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [Crossref] [PubMed]
  12. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
    [Crossref] [PubMed]
  13. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
    [Crossref] [PubMed]
  14. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17(11), 8947–8955 (2009).
    [Crossref] [PubMed]
  15. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
    [Crossref] [PubMed]
  16. C. Dai, S. Fan, X. Chai, Y. Li, Q. Ren, P. Xi, and C. Zhou, “Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range,” Appl. Opt. 53(24), 5375–5379 (2014).
    [Crossref] [PubMed]
  17. A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
    [Crossref] [PubMed]
  18. J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
    [Crossref] [PubMed]
  19. J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
    [Crossref] [PubMed]
  20. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  21. H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
    [Crossref] [PubMed]
  22. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
    [Crossref] [PubMed]
  23. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  24. S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
    [Crossref] [PubMed]
  25. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
    [Crossref] [PubMed]
  26. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [Crossref] [PubMed]
  27. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
    [Crossref] [PubMed]
  28. H. Helmholtz, “Ueber die accommodation des auges,” Graefes Arch. Clin. Exp. Ophthalmol. 2(1), 1–74 (1855).
    [Crossref]
  29. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref] [PubMed]
  30. Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
    [Crossref] [PubMed]
  31. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
    [Crossref] [PubMed]
  32. D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
    [Crossref] [PubMed]
  33. S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
    [Crossref] [PubMed]

2014 (5)

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

C. Dai, S. Fan, X. Chai, Y. Li, Q. Ren, P. Xi, and C. Zhou, “Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range,” Appl. Opt. 53(24), 5375–5379 (2014).
[Crossref] [PubMed]

2013 (2)

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (2)

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
[Crossref] [PubMed]

J. Zhang, P. Wang, and Z. Chen, “Long imaging range optical coherence tomography based on a narrow line-width dual band Fourier domain mode-locked swept source,” Proc. SPIE 7889, 78892P (2011).

2010 (1)

S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

M. Restori, “Imaging the vitreous: optical coherence tomography and ultrasound imaging,” Eye (Lond.) 22(10), 1251–1256 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (3)

E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

2004 (3)

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

2002 (2)

1998 (1)

G. Hausler and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

1995 (1)

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[Crossref] [PubMed]

1989 (1)

1855 (1)

H. Helmholtz, “Ueber die accommodation des auges,” Graefes Arch. Clin. Exp. Ophthalmol. 2(1), 1–74 (1855).
[Crossref]

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[Crossref] [PubMed]

Bajraszewski, T.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Baumann, B.

Birkenfeld, J.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Bradley, A.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[Crossref] [PubMed]

Bustamante, T.

Butterworth, J.

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
[Crossref] [PubMed]

Cable, A. E.

Calvas, P.

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
[Crossref] [PubMed]

Chai, X.

Chen, Z.

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

J. Zhang, P. Wang, and Z. Chen, “Long imaging range optical coherence tomography based on a narrow line-width dual band Fourier domain mode-locked swept source,” Proc. SPIE 7889, 78892P (2011).

Cheong, S.-H.

S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

Collins, M. J.

S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Dai, C.

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

C. Dai, S. Fan, X. Chai, Y. Li, Q. Ren, P. Xi, and C. Zhou, “Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range,” Appl. Opt. 53(24), 5375–5379 (2014).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

de Castro, A.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

De Freitas, C.

Dhalla, A.-H.

Du, C.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

Duker, J. S.

Fan, S.

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

C. Dai, S. Fan, X. Chai, Y. Li, Q. Ren, P. Xi, and C. Zhou, “Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range,” Appl. Opt. 53(24), 5375–5379 (2014).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

Fercher, A. F.

Fujimoto, J. G.

Goeckner, P. A.

Götzinger, E.

Grulkowski, I.

Hausler, G.

G. Hausler and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

Helmholtz, H.

H. Helmholtz, “Ueber die accommodation des auges,” Graefes Arch. Clin. Exp. Ophthalmol. 2(1), 1–74 (1855).
[Crossref]

Hitzenberger, C.

Hitzenberger, C. K.

Ho, A.

Ishikawa, H.

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[Crossref] [PubMed]

Izatt, J.

Izatt, J. A.

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[Crossref] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

Jayaraman, V.

Jeong, H.-W.

Jiang, H.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

Jiang, J.

Jiao, S.

Kaluzny, B. J.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Kaufman, P. L.

Kim, B.-M.

Koretz, J. E.

Koretz, J. F.

Kowalczyk, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

Krawczynski, M. R.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Kuo, A.

Lee, S.-W.

Leitgeb, R.

Li, M.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Li, Y.

Lindner, M. W.

G. Hausler and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

Liu, C.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

Liu, J. J.

Lu, C. D.

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Malecaze, F.

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
[Crossref] [PubMed]

Manns, F.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

Marcos, S.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Meng, W.

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
[Crossref] [PubMed]

Nankivil, D.

Neider, M. W.

Parel, J.-M.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

Pircher, M.

Potsaid, B.

Radhakrishnan, S.

Read, S. A.

S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Ren, Q.

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

C. Dai, S. Fan, X. Chai, Y. Li, Q. Ren, P. Xi, and C. Zhou, “Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range,” Appl. Opt. 53(24), 5375–5379 (2014).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

Restori, M.

M. Restori, “Imaging the vitreous: optical coherence tomography and ultrasound imaging,” Eye (Lond.) 22(10), 1251–1256 (2008).
[Crossref] [PubMed]

Rollins, A.

Ruggeri, M.

Schuman, J. S.

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[Crossref] [PubMed]

Semmlow, J. L.

Shao, Y.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

Shen, M.

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[Crossref] [PubMed]

Strenk, L. M.

Strenk, S. A.

Sun, Y.

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

Szkulmowska, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Szkulmowski, M.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Tao, A.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

Thibos, L. N.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[Crossref] [PubMed]

Uhlhorn, S. R.

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

Wang, J.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17(11), 8947–8955 (2009).
[Crossref] [PubMed]

Wang, M. R.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Wang, P.

J. Zhang, P. Wang, and Z. Chen, “Long imaging range optical coherence tomography based on a narrow line-width dual band Fourier domain mode-locked swept source,” Proc. SPIE 7889, 78892P (2011).

Wawrocka, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

Westphal, V.

Wojtkowski, M.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

Woodman, E. C.

S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Xi, P.

Xu, Z.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Zhang, H.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, P. Wang, and Z. Chen, “Long imaging range optical coherence tomography based on a narrow line-width dual band Fourier domain mode-locked swept source,” Proc. SPIE 7889, 78892P (2011).

Zheng, H.

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

Zhong, J.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4(7), 1031–1044 (2013).
[Crossref] [PubMed]

Zhou, C.

Zhu, D.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Am. J. Ophthalmol. (2)

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial Biometry of the Entire Eye Using Ultra-Long Scan Depth Optical Coherence Tomography,” Am. J. Ophthalmol. 157(2), 412–420 (2014).
[Crossref] [PubMed]

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (3)

Cornea (1)

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008).
[Crossref] [PubMed]

Curr. Eye Res. (1)

Y. Sun, S. Fan, H. Zheng, C. Dai, Q. Ren, and C. Zhou, “Noninvasive Imaging and Measurement of Accommodation Using Dual-Channel SD-OCT,” Curr. Eye Res. 39(6), 611–619 (2014).
[Crossref] [PubMed]

Eye (Lond.) (1)

M. Restori, “Imaging the vitreous: optical coherence tomography and ultrasound imaging,” Eye (Lond.) 22(10), 1251–1256 (2008).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

H. Helmholtz, “Ueber die accommodation des auges,” Graefes Arch. Clin. Exp. Ophthalmol. 2(1), 1–74 (1855).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

G. Hausler and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref] [PubMed]

S. Fan, Y. Sun, C. Dai, H. Zheng, Q. Ren, S. Jiao, and C. Zhou, “Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography,” J. Biomed. Opt. 19(9), 096012 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Ophthalmol. Clin. North Am. (1)

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[Crossref] [PubMed]

Ophthalmologica (1)

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, “Axial length of myopia: a review of current research,” Ophthalmologica 225(3), 127–134 (2011).
[Crossref] [PubMed]

Ophthalmology (1)

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Optom. Vis. Sci. (3)

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, E. C. Woodman, and S.-H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Zhang, P. Wang, and Z. Chen, “Long imaging range optical coherence tomography based on a narrow line-width dual band Fourier domain mode-locked swept source,” Proc. SPIE 7889, 78892P (2011).

Vision Res. (1)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

Other (1)

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer, 2008).

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (2234 KB)     
» Visualization 2: AVI (2350 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the dual band dual focus SD-OCT system. The inset is an illustration of the scanning area with dual-focus configuration. DM1-DM3: dichroic mirrors, C1-C6: collimating lenses, L1-L8: lenses, M1-M3: mirrors, COA: collimating optical assembly.

Fig. 2
Fig. 2

The system parameters of 1050 nm SD-OCT. (a) Measured sensitivity at different imaging depths; (b) Point spread function (PSF) at an imaging depth of 0.5 mm

Fig. 3
Fig. 3

Anterior segment image acquired from AS-OCT. (a) Image using conventional SD-OCT signal processing; (b) Full range reconstruction by FRC technique; Image size: 12.33 mm (depth) × 14 mm (width); 2048 A-scans/B-scan. White bar: 1 mm.

Fig. 4
Fig. 4

Retina image acquired from retina-OCT (a) and magnification of the macular region around the fovea (red box in (a)) (b). NFL: nerve fiber layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, ELM: external limiting membrane IS/OS: photoreceptor inner/outer segments, RPE: retinal pigment epithelium. White bar: 0.5 mm.

Fig. 5
Fig. 5

Whole eye segment imaging with dual band SD-OCT in a myopic eye (−2.0 D, AL = 24.80 mm). (a) 3D reconstruction from volumetric data (Visualization 1); (b) Central cross-sectional image of the whole eye segment. CT: corneal thickness; ACD: anterior chamber depth; LT: lens thickness; VT: vitreous length; RT: retina thickness; AL: axial length. Acquisition time: 85 ms/B-scan. Image size: 36.71 mm (depth) × 14 mm (width). White bar: 1 mm.

Fig. 6
Fig. 6

Movie of OCT imaging of dynamical change in the whole eye segment from relaxed state (a) to + 6 D accommodated state (b) (Visualization 2). The frame rate of the movie is 11 fps (approximately 85 ms/frame). Image size: 36.71 mm (depth) × 14 mm (width). White bar: 1 mm.

Tables (1)

Tables Icon

Table 1 The ocular biometry (mean ± standard deviation [SD]) of the whole eye at relaxed and + 6 D accommodated states

Metrics