Abstract

Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiplexed force measurements on live cells with holographic optical tweezers

Cecile O. Mejean, Andrew W. Schaefer, Eleanor A. Millman, Paul Forscher, and Eric R. Dufresne
Opt. Express 17(8) 6209-6217 (2009)

Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers

Anna Chiara De Luca, Giovanni Volpe, Anna Morales Drets, Maria Isabel Geli, Giuseppe Pesce, Giulia Rusciano, Antonio Sasso, and Dmitri Petrov
Opt. Express 15(13) 7922-7932 (2007)

Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing

Yuxiang Liu and Miao Yu
Opt. Express 17(16) 13624-13638 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  2. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
    [Crossref] [PubMed]
  3. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
    [Crossref] [PubMed]
  4. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
    [Crossref]
  5. M. Dembo and Y.-L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J. 76(4), 2307–2316 (1999).
    [Crossref] [PubMed]
  6. W. B. Hickory and R. Nanda, “Effect of tensile force magnitude on release of cranial suture cells into S phase,” Am. J. Orthod. Dentofacial Orthop. 91(4), 328–334 (1987).
    [Crossref] [PubMed]
  7. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
    [Crossref] [PubMed]
  8. C. D. Roskelley, P. Y. Desprez, and M. J. Bissell, “Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 91(26), 12378–12382 (1994).
    [Crossref] [PubMed]
  9. A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science 208(4440), 177–179 (1980).
    [Crossref] [PubMed]
  10. I. Schoen, B. L. Pruitt, and V. Vogel, “The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials,” Annu. Rev. Mater. Res. 43(1), 589–618 (2013).
    [Crossref]
  11. O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
    [Crossref] [PubMed]
  12. N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
    [Crossref] [PubMed]
  13. C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
    [Crossref] [PubMed]
  14. W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
    [Crossref] [PubMed]
  15. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
    [Crossref] [PubMed]
  16. W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
    [Crossref] [PubMed]
  17. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009).
    [Crossref] [PubMed]
  18. Y. Liu and M. Yu, “Multiple traps created with an inclined dual-fiber system,” Opt. Express 17(24), 21680–21690 (2009).
    [Crossref] [PubMed]
  19. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  20. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
    [Crossref]
  21. R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
    [Crossref] [PubMed]
  22. G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
    [PubMed]
  23. W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
    [Crossref] [PubMed]
  24. R. Ananthakrishnan and A. Ehrlicher, “The forces behind cell movement,” Int. J. Biol. Sci. 3(5), 303–317 (2007).
    [Crossref] [PubMed]
  25. M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on Cell Mechanics: Experimental and Modeling Approaches,” Appl. Mech. Rev. 65(6), 510–518 (2013).
    [Crossref]
  26. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
    [Crossref] [PubMed]
  27. B. P. Chan, “Biomedical applications of photochemistry,” Tissue Eng. Pt. B-Rev. 16, 509–522 (2010).
  28. K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

2014 (1)

K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

2013 (3)

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
[PubMed]

M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on Cell Mechanics: Experimental and Modeling Approaches,” Appl. Mech. Rev. 65(6), 510–518 (2013).
[Crossref]

I. Schoen, B. L. Pruitt, and V. Vogel, “The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials,” Annu. Rev. Mater. Res. 43(1), 589–618 (2013).
[Crossref]

2012 (1)

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

2011 (1)

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
[Crossref] [PubMed]

2010 (3)

B. P. Chan, “Biomedical applications of photochemistry,” Tissue Eng. Pt. B-Rev. 16, 509–522 (2010).

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

R. Ananthakrishnan and A. Ehrlicher, “The forces behind cell movement,” Int. J. Biol. Sci. 3(5), 303–317 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

2004 (3)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

2001 (2)

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
[Crossref] [PubMed]

1999 (1)

M. Dembo and Y.-L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J. 76(4), 2307–2316 (1999).
[Crossref] [PubMed]

1997 (2)

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[Crossref]

1994 (3)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref] [PubMed]

C. D. Roskelley, P. Y. Desprez, and M. J. Bissell, “Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 91(26), 12378–12382 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

1987 (1)

W. B. Hickory and R. Nanda, “Effect of tensile force magnitude on release of cranial suture cells into S phase,” Am. J. Orthod. Dentofacial Orthop. 91(4), 328–334 (1987).
[Crossref] [PubMed]

1980 (1)

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science 208(4440), 177–179 (1980).
[Crossref] [PubMed]

Addadi, L.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Ananthakrishnan, R.

R. Ananthakrishnan and A. Ehrlicher, “The forces behind cell movement,” Int. J. Biol. Sci. 3(5), 303–317 (2007).
[Crossref] [PubMed]

Austin, R. H.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Balaban, N. Q.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Bershadsky, A.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Bissell, M. J.

C. D. Roskelley, P. Y. Desprez, and M. J. Bissell, “Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 91(26), 12378–12382 (1994).
[Crossref] [PubMed]

Blakely, B. L.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Buguin, A.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Burnham, N. A.

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
[PubMed]

Camesano, T. A.

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
[PubMed]

Carpenter, A. E.

Chan, B. P.

B. P. Chan, “Biomedical applications of photochemistry,” Tissue Eng. Pt. B-Rev. 16, 509–522 (2010).

Chavrier, P.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Chen, C. S.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Cohen, D. M.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Cukierman, E.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
[Crossref] [PubMed]

Dembo, M.

M. Dembo and Y.-L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J. 76(4), 2307–2316 (1999).
[Crossref] [PubMed]

Desprez, P. Y.

C. D. Roskelley, P. Y. Desprez, and M. J. Bissell, “Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 91(26), 12378–12382 (1994).
[Crossref] [PubMed]

du Roure, O.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Ehrlicher, A.

R. Ananthakrishnan and A. Ehrlicher, “The forces behind cell movement,” Int. J. Biol. Sci. 3(5), 303–317 (2007).
[Crossref] [PubMed]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Franck, C.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
[Crossref] [PubMed]

Geiger, B.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Genin, G. M.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Gerde, E.

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

Goichberg, P.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[Crossref]

Hällström, W.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Hammarin, G.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Harris, A. K.

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science 208(4440), 177–179 (1980).
[Crossref] [PubMed]

Hessman, D.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Hickory, W. B.

W. B. Hickory and R. Nanda, “Effect of tensile force magnitude on release of cranial suture cells into S phase,” Am. J. Orthod. Dentofacial Orthop. 91(4), 328–334 (1987).
[Crossref] [PubMed]

Huang, S.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Ingber, D. E.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Kanje, M.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Käs, J.

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

Kim, B.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Kolb, L.

K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

Ladoux, B.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Legant, W. R.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Lexholm, M.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Liu, Y.

Lutolf, M. P.

K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

Mahaffy, R. E.

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

Mahalu, D.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Maskarinec, S. A.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
[Crossref] [PubMed]

McDonald, J.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

McGarry, P. J.

M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on Cell Mechanics: Experimental and Modeling Approaches,” Appl. Mech. Rev. 65(6), 510–518 (2013).
[Crossref]

Mezencev, R.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Miller, J. S.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Montelius, L.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Mosiewicz, K. A.

K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

Mrksich, M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Nanda, R.

W. B. Hickory and R. Nanda, “Effect of tensile force magnitude on release of cranial suture cells into S phase,” Am. J. Orthod. Dentofacial Orthop. 91(4), 328–334 (1987).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Pankov, R.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
[Crossref] [PubMed]

Park, S.

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

Perkins, T. T.

Prinz, C. N.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Pruitt, B. L.

I. Schoen, B. L. Pruitt, and V. Vogel, “The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials,” Annu. Rev. Mater. Res. 43(1), 589–618 (2013).
[Crossref]

Ravichandran, G.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
[Crossref] [PubMed]

Riveline, D.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Rodriguez, M. L.

M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on Cell Mechanics: Experimental and Modeling Approaches,” Appl. Mech. Rev. 65(6), 510–518 (2013).
[Crossref]

Roskelley, C. D.

C. D. Roskelley, P. Y. Desprez, and M. J. Bissell, “Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 91(26), 12378–12382 (1994).
[Crossref] [PubMed]

Sabanay, I.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Saez, A.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Safran, S.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Samuelson, L.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Schoen, I.

I. Schoen, B. L. Pruitt, and V. Vogel, “The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials,” Annu. Rev. Mater. Res. 43(1), 589–618 (2013).
[Crossref]

Schwarz, U. S.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Seol, Y.

Shih, C. K.

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

Silberzan, P.

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref] [PubMed]

Sniadecki, N. J.

M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on Cell Mechanics: Experimental and Modeling Approaches,” Appl. Mech. Rev. 65(6), 510–518 (2013).
[Crossref]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref] [PubMed]

Stevens, D. R.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
[Crossref] [PubMed]

Stopak, D.

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science 208(4440), 177–179 (1980).
[Crossref] [PubMed]

Sulchek, T.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Suyatin, D. B.

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Thomas, G.

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
[PubMed]

Tirrell, D. A.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
[Crossref] [PubMed]

Tzur, G.

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Van Der Vlies, A. J.

K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

Vogel, V.

I. Schoen, B. L. Pruitt, and V. Vogel, “The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials,” Annu. Rev. Mater. Res. 43(1), 589–618 (2013).
[Crossref]

Wang, L.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Wang, Y.-L.

M. Dembo and Y.-L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J. 76(4), 2307–2316 (1999).
[Crossref] [PubMed]

Wen, Q.

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
[PubMed]

Whitesides, G. M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Wild, P.

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science 208(4440), 177–179 (1980).
[Crossref] [PubMed]

Xu, W.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Yamada, K. M.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
[Crossref] [PubMed]

Yu, M.

Am. J. Orthod. Dentofacial Orthop. (1)

W. B. Hickory and R. Nanda, “Effect of tensile force magnitude on release of cranial suture cells into S phase,” Am. J. Orthod. Dentofacial Orthop. 91(4), 328–334 (1987).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

I. Schoen, B. L. Pruitt, and V. Vogel, “The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials,” Annu. Rev. Mater. Res. 43(1), 589–618 (2013).
[Crossref]

Appl. Mech. Rev. (1)

M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on Cell Mechanics: Experimental and Modeling Approaches,” Appl. Mech. Rev. 65(6), 510–518 (2013).
[Crossref]

Biomater. Sci. (1)

K. A. Mosiewicz, L. Kolb, A. J. Van Der Vlies, and M. P. Lutolf, “Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols,” Biomater. Sci. 2, 1640–1651 (2014).

Biophys. J. (2)

M. Dembo and Y.-L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J. 76(4), 2307–2316 (1999).
[Crossref] [PubMed]

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, “Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,” Biophys. J. 86(3), 1777–1793 (2004).
[Crossref] [PubMed]

Curr. Opin. Colloid Interface Sci. (1)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[Crossref]

Int. J. Biol. Sci. (1)

R. Ananthakrishnan and A. Ehrlicher, “The forces behind cell movement,” Int. J. Biol. Sci. 3(5), 303–317 (2007).
[Crossref] [PubMed]

J. Vis. Exp. (1)

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, “Measuring the mechanical properties of living cells using atomic force microscopy,” J. Vis. Exp. 76(76), e50497 (2013).
[PubMed]

Nano Lett. (1)

W. Hällström, M. Lexholm, D. B. Suyatin, G. Hammarin, D. Hessman, L. Samuelson, L. Montelius, M. Kanje, and C. N. Prinz, “Fifteen-piconewton force detection from neural growth cones using nanowire arrays,” Nano Lett. 10(3), 782–787 (2010).
[Crossref] [PubMed]

Nat. Cell Biol. (1)

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol. 3(5), 466–472 (2001).
[Crossref] [PubMed]

Nat. Methods (1)

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Nature (2)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

PLoS ONE (2)

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions,” PLoS ONE 6(3), e17833 (2011).
[Crossref] [PubMed]

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux, “Force mapping in epithelial cell migration,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005).
[Crossref] [PubMed]

C. D. Roskelley, P. Y. Desprez, and M. J. Bissell, “Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 91(26), 12378–12382 (1994).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Science (3)

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science 208(4440), 177–179 (1980).
[Crossref] [PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294(5547), 1708–1712 (2001).
[Crossref] [PubMed]

Tissue Eng. Pt. B-Rev. (1)

B. P. Chan, “Biomedical applications of photochemistry,” Tissue Eng. Pt. B-Rev. 16, 509–522 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Working principles and the fiber setup of the inclined DFOTs. Fs = scattering force; Fg = gradient force. The inclined DFOTs can be moved by a single translational stage that controls the position of the aluminum board (yellow plate in the figure). (b) Schematic of the measurement setup of the inclined dual fiber optical trapping system.

Fig. 2
Fig. 2

Experimental demonstration of 3D trapping of living yeast cells with the inclined DFOTs. (a-d) Consecutive microscope images of the trapping experiment. The red arrows indicate the trapped yeast cell, and the black arrows point to a free reference yeast cell. The yeast cell was (a) trapped and (b) moved in the -x direction, followed by (c) + z and (d) + y directions. The positions of the fibers and trapped beads in (b-d) are shown in the schematics (e-g), respectively. The next movements of the optical trap are shown in the lower left corners of (a-c) and at the bottom of (e-f). The black shadow on the left-hand side of (a-d) is the tapered fiber tip. The optical power from each fiber taper was 6.8 mW.

Fig. 3
Fig. 3

Typical experimentally measured power spectrum data (black circles) and Lorentzian fitting (solid curves) at 91.76 mW in the (a) x and (b) y directions. Spring constants of optical trap versus optical powers in DI water in the (c) x and (d) y directions. The linear extension (red dashed line) of the fitted curve (blue solid line) passes through point (0, 0). The optical power shown is the power emitted by each fiber. SC = spring constant.

Fig. 4
Fig. 4

(a) Lorentzian fitting of a typical set of power spectrum data in the polyacrylamide gel at the power of 67.0 mW, which corresponds to the red data point in (b). (b) Effective spring constant VS powers for a bead embedded in the polyacrylamide gel in y direction (see Fig. 1 (a)). The intersection with the vertical axis of 0.012 N/m indicates the polyacrylamide gel stiffness.

Fig. 5
Fig. 5

AFM microrheology measurements of the polyacrylamide gel. (a) The sinusoidal force (red) and indentation (blue) as functions of time in a typical measurement. (b) Force as a function of indentation. The blue curve is obtained from the raw data in (a), and the red curve is from the sinusoidal fitting of the data in (a).

Fig. 6
Fig. 6

(a-c) COMSOL calculated the displacement field of a bead embedded in polyacrylamide gel when the bead depth is (a) 0, (b) −2 μm, and (c) −10 μm. The bead top surface is flush with the polyacrylamide gel top surface when the bead depth is 0. The top and bottom figures are the side and top views, respectively. The polyacrylamide gel thickness used in the simulation is 50 μm. (d) Calculated dependence of the polyacrylamide gel stiffness on the bead depth. The three red data points correspond to the results shown in (a-c), respectively. The inclined DFOTs measurements are also shown for comparison.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S x x ( f ) = k B T π 2 γ ( f 0 2 + f 2 ) ,
k = 2 π γ f 0 .

Metrics