Abstract

Stimulated emission depletion (STED) microscopy provides fluorescence imaging with sub-diffraction resolution. Experimentally demonstrated at the end of the 90s, STED microscopy has gained substantial momentum and impact only in the last few years. Indeed, advances in many fields improved its compatibility with everyday biological research. Among them, a fundamental step was represented by the introduction in a STED architecture of the time-gated detection, which greatly reduced the complexity of the implementation and the illumination intensity needed. However, the benefits of the time-gated detection came along with a reduction of the fluorescence signal forming the STED microscopy images. The maximization of the useful (within the time gate) photon flux is then an important aspect to obtain super-resolved images. Here we show that by using a fast-gated single-photon avalanche diode (SPAD), i.e. a detector able to rapidly (hundreds picoseconds) switch-on and -off can improve significantly the signal-to-noise ratio (SNR) of the gated STED image. In addition to an enhancement of the image SNR, the use of the fast-gated SPAD reduces also the system complexity. We demonstrate these abilities both on calibration and biological sample. The experiments were carried on a gated STED microscope based on a STED beam operating in continuous-wave (CW), although the fast-gated SPAD is fully compatible with gated STED implementations based on pulsed STED beams.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strategies to maximize the performance of a STED microscope

Silvia Galiani, Benjamin Harke, Giuseppe Vicidomini, Gabriele Lignani, Fabio Benfenati, Alberto Diaspro, and Paolo Bianchini
Opt. Express 20(7) 7362-7374 (2012)

Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses

Johanna Bückers, Dominik Wildanger, Giuseppe Vicidomini, Lars Kastrup, and Stefan W. Hell
Opt. Express 19(4) 3130-3143 (2011)

STED with wavelengths closer to the emission maximum

Giuseppe Vicidomini, Gael Moneron, Christian Eggeling, Eva Rittweger, and Stefan W. Hell
Opt. Express 20(5) 5225-5236 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6, 24–32 (2009).
    [Crossref] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  3. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
    [Crossref]
  4. H. Blom and J. Widengren, “STED microscopy - towards broadened use and scope of applications,” Curr. Opin. Chem. Biol. 20, 127–133 (2014).
    [Crossref] [PubMed]
  5. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
    [Crossref] [PubMed]
  6. B. R. Rankin, R. R. Kellner, and S. W. Hell, “Stimulated-emission-depletion microscopy with a multicolor stimulated-raman-scattering light source,” Opt. Lett. 33, 2491–2493 (2008).
    [Crossref] [PubMed]
  7. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color sted imaging for colocalization analyses,” Opt. Express 19, 3130–3143 (2011).
    [Crossref] [PubMed]
  8. S. Schrof, T. Staudt, E. Rittweger, N. Wittenmayer, T. Dresbach, J. Engelhardt, and S. W. Hell, “STED nanoscopy with mass-produced laser diodes,” Opt. Express 19, 8066–8072 (2011).
    [Crossref] [PubMed]
  9. V. Mueller, C. Eggeling, C. Karsol, and D. von Gegerfelt, “CW DPSS laser make STED microscopy more practical,” Biophotonics 19, 30–32 (2012).
  10. I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
    [Crossref]
  11. B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
    [Crossref] [PubMed]
  12. W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
    [Crossref] [PubMed]
  13. G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
    [Crossref]
  14. K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
    [Crossref]
  15. R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
    [Crossref] [PubMed]
  16. M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105, 234106 (2014).
    [Crossref]
  17. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113–115 (2008).
    [Crossref] [PubMed]
  18. J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express 19, 4242–4254 (2011).
    [Crossref] [PubMed]
  19. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
    [Crossref] [PubMed]
  20. G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
    [Crossref] [PubMed]
  21. F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
    [Crossref] [PubMed]
  22. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
    [Crossref] [PubMed]
  23. G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20, 5225–5236 (2012).
    [Crossref] [PubMed]
  24. E. Ronzitti, B. Harke, and A. Diaspro, “Frequency dependent detection in a STED microscope using modulated excitation light,” Opt. Express 21, 210–219 (2013).
    [Crossref] [PubMed]
  25. I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
    [Crossref] [PubMed]
  26. A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
    [Crossref] [PubMed]
  27. M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
    [Crossref] [PubMed]
  28. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
    [Crossref] [PubMed]
  29. Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
    [Crossref]
  30. G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
    [Crossref]
  31. X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
    [Crossref]

2015 (1)

X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
[Crossref]

2014 (9)

M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

H. Blom and J. Widengren, “STED microscopy - towards broadened use and scope of applications,” Curr. Opin. Chem. Biol. 20, 127–133 (2014).
[Crossref] [PubMed]

W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
[Crossref] [PubMed]

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
[Crossref]

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105, 234106 (2014).
[Crossref]

2013 (5)

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

E. Ronzitti, B. Harke, and A. Diaspro, “Frequency dependent detection in a STED microscope using modulated excitation light,” Opt. Express 21, 210–219 (2013).
[Crossref] [PubMed]

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

2012 (3)

2011 (5)

2010 (1)

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

2009 (1)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6, 24–32 (2009).
[Crossref] [PubMed]

2008 (3)

2006 (1)

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

1999 (1)

1994 (1)

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Arndt, H.-D.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Auksorius, E.

Belov, V. N.

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

Benfenati, F.

Berning, S.

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

Bertero, M.

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Bianchini, P.

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
[Crossref] [PubMed]

Blaukopf, C.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Blom, H.

H. Blom and J. Widengren, “STED microscopy - towards broadened use and scope of applications,” Curr. Opin. Chem. Biol. 20, 127–133 (2014).
[Crossref] [PubMed]

Boccacci, P.

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Boruah, B. R.

Boso, G.

M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Boyarskiy, V. P.

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

Bückers, J.

Buttafava, M.

M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Castello, M.

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105, 234106 (2014).
[Crossref]

Cavicchioli, R.

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Cella Zanacchi, F.

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

Christodoulou, S.

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

Contini, D.

Cordes, V. C.

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

Coto Hernàndez, I.

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
[Crossref]

Cubeddu, R.

d’Amora, M.

I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
[Crossref]

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

D’Este, E.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Dalla Mora, A.

M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Diaspro, A.

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
[Crossref]

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105, 234106 (2014).
[Crossref]

E. Ronzitti, B. Harke, and A. Diaspro, “Frequency dependent detection in a STED microscope using modulated excitation light,” Opt. Express 21, 210–219 (2013).
[Crossref] [PubMed]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
[Crossref] [PubMed]

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Dresbach, T.

Dunsby, C.

Eggeling, C.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

V. Mueller, C. Eggeling, C. Karsol, and D. von Gegerfelt, “CW DPSS laser make STED microscopy more practical,” Biophotonics 19, 30–32 (2012).

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20, 5225–5236 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Engelhardt, J.

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

S. Schrof, T. Staudt, E. Rittweger, N. Wittenmayer, T. Dresbach, J. Engelhardt, and S. W. Hell, “STED nanoscopy with mass-produced laser diodes,” Opt. Express 19, 8066–8072 (2011).
[Crossref] [PubMed]

Fournier, M.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

French, P. M. W.

Galiani, S.

Gerlich, D. W.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Gottfert, F.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

Gttfert, F.

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

Gu, Z.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Gulinatti, A.

Guther, A.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Han, K. Y.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Hao, X.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Harke, B.

Hein, B.

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

Hell, S. W.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20, 5225–5236 (2012).
[Crossref] [PubMed]

S. Schrof, T. Staudt, E. Rittweger, N. Wittenmayer, T. Dresbach, J. Engelhardt, and S. W. Hell, “STED nanoscopy with mass-produced laser diodes,” Opt. Express 19, 8066–8072 (2011).
[Crossref] [PubMed]

J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color sted imaging for colocalization analyses,” Opt. Express 19, 3130–3143 (2011).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6, 24–32 (2009).
[Crossref] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
[Crossref] [PubMed]

B. R. Rankin, R. R. Kellner, and S. W. Hell, “Stimulated-emission-depletion microscopy with a multicolor stimulated-raman-scattering light source,” Opt. Lett. 33, 2491–2493 (2008).
[Crossref] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref] [PubMed]

Honigmann, A.

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Jakobs, S.

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

Johnsson, K.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Karsol, C.

V. Mueller, C. Eggeling, C. Karsol, and D. von Gegerfelt, “CW DPSS laser make STED microscopy more practical,” Biophotonics 19, 30–32 (2012).

Kastrup, L.

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Kellner, R. R.

Kennedy, G.

Klar, T. A.

Kolmakov, K.

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

Kuang, C.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Lanigan, P. M. P.

Lhrmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Li, S.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Lignani, G.

Liu, X.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Lukinavicius, G.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Masharina, A.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Medda, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Meineke, D. N. H.

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

Michaelis, J.

Moffitt, J. R.

Moneron, G.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20, 5225–5236 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Mora, A. D.

Mueller, V.

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

V. Mueller, C. Eggeling, C. Karsol, and D. von Gegerfelt, “CW DPSS laser make STED microscopy more practical,” Biophotonics 19, 30–32 (2012).

Neil, M. A. A.

Opazo, F.

W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
[Crossref] [PubMed]

Osseforth, C.

Peres, C.

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

Pifferi, A.

Rankin, B. R.

Reuss, M.

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Reymond, L.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Rhse, H.

W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
[Crossref] [PubMed]

Rittweger, E.

Rizzo, S.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Rizzoli, S. O.

W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
[Crossref] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Ronzitti, E.

Ruggeri, A.

M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Schönle, A.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

Schrof, S.

Sommer, C.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Spinelli, L.

Staudt, T.

Stefani, E.

X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
[Crossref]

Ta, H.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Toro, L.

X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
[Crossref]

Torricelli, A.

Tosi, A.

Vicidomini, G.

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105, 234106 (2014).
[Crossref]

I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
[Crossref]

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20, 5225–5236 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color sted imaging for colocalization analyses,” Opt. Express 19, 3130–3143 (2011).
[Crossref] [PubMed]

von Gegerfelt, D.

V. Mueller, C. Eggeling, C. Karsol, and D. von Gegerfelt, “CW DPSS laser make STED microscopy more practical,” Biophotonics 19, 30–32 (2012).

Waldmann, H.

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Wang, Y.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Westphal, V.

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

Wichmann, J.

Widengren, J.

H. Blom and J. Widengren, “STED microscopy - towards broadened use and scope of applications,” Curr. Opin. Chem. Biol. 20, 127–133 (2014).
[Crossref] [PubMed]

Wildanger, D.

Willig, K. I.

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

Wittenmayer, N.

Wu, X.

X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
[Crossref]

Wu, Y.

X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
[Crossref]

Wurm, C. A.

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

Xu, Y.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Zanella, R.

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Zanghirati, G.

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Zanni, L.

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Zappa, F.

Zhang, W. I.

W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105, 234106 (2014).
[Crossref]

Biophotonics (1)

V. Mueller, C. Eggeling, C. Karsol, and D. von Gegerfelt, “CW DPSS laser make STED microscopy more practical,” Biophotonics 19, 30–32 (2012).

Biophys. J. (2)

B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98, 158–163 (2010).
[Crossref] [PubMed]

F. Gottfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref] [PubMed]

Chem. Eur. J. (1)

K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Gttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, “Polar red-emitting rhodamine dyes with reactive groups: Synthesis, photophysical properties, and two-color STED nanoscopy applications,” Chem. Eur. J. 20, 146–157 (2014).
[Crossref]

Curr. Opin. Chem. Biol. (1)

H. Blom and J. Widengren, “STED microscopy - towards broadened use and scope of applications,” Curr. Opin. Chem. Biol. 20, 127–133 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

I. Coto Hernàndez, C. Peres, F. Cella Zanacchi, M. d’Amora, S. Christodoulou, P. Bianchini, A. Diaspro, and G. Vicidomini, “A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy,” J. Biophotonics 7, 376–380 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

X. Wu, L. Toro, E. Stefani, and Y. Wu, “Ultrafast photon counting applied to resonant scanning STED microscopy,” J. Microsc. 257, 31–38 (2015).
[Crossref]

Laser Phys. Lett. (1)

I. Coto Hernàndez, M. d’Amora, A. Diaspro, and G. Vicidomini, “Influence of laser intensity noise on gated CW-STED microscopy,” Laser Phys. Lett. 11, 095603 (2014).
[Crossref]

Methods (1)

G. Vicidomini, I. Coto Hernàndez, M. d’Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, “Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation,” Methods 66, 124–130 (2014).
[Crossref]

Microsc. Res. Tech. (1)

W. I. Zhang, H. Rhse, S. O. Rizzoli, and F. Opazo, “Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution sted microscopy,” Microsc. Res. Tech. 77, 517–527 (2014).
[Crossref] [PubMed]

Nat Meth (1)

G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell, and K. Johnsson, “Fluorogenic probes for live-cell imaging of the cytoskeleton,” Nat Meth 11, 731–733 (2014).
[Crossref]

Nat. Methods (2)

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6, 24–32 (2009).
[Crossref] [PubMed]

Opt. Eng. (1)

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52, 093107 (2013).
[Crossref]

Opt. Express (8)

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[Crossref] [PubMed]

J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express 19, 4242–4254 (2011).
[Crossref] [PubMed]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20, 5225–5236 (2012).
[Crossref] [PubMed]

E. Ronzitti, B. Harke, and A. Diaspro, “Frequency dependent detection in a STED microscope using modulated excitation light,” Opt. Express 21, 210–219 (2013).
[Crossref] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
[Crossref] [PubMed]

J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color sted imaging for colocalization analyses,” Opt. Express 19, 3130–3143 (2011).
[Crossref] [PubMed]

S. Schrof, T. Staudt, E. Rittweger, N. Wittenmayer, T. Dresbach, J. Engelhardt, and S. W. Hell, “STED nanoscopy with mass-produced laser diodes,” Opt. Express 19, 8066–8072 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

PLoS ONE (1)

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: Theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental gCW-STED setup integrated with the fast-gated SPAD module. HWP: half-wave plate; QWP: quarter-wave plate; GTP: Glam–Thompson polarizer; PM: phase mask; DM: dichroic mirror; GMs: galvanometer mirrors; SL: scanning lens; TL: tube lens; OL: objective lens; 3AS: three-axis stage; BPF: band-pass filter; PMF: polarization-maintaining fibre; SPAD: single-photon avalanche diode; AD: achromatic doublet; BR: beam reducer; PC: personal computer; TCSPC: time-correlated single photon counting; DAQ: data acquisition.

Fig. 2
Fig. 2

Fast-gated SPAD module performances. (a, upper panel) Photon counts distribution within a 7 ns gate-ON time window. The light source used was not correlated to the 80 MHz signal which triggered the SPAD. (a, lower panel) Photon counts distribution in case of fluorescence signal. The position of the excitation pulses is marked in green and the gate window is opened after 2 ns. (b) Photon-flux response for linear increasing florescence light focused on the fast-gated SPAD module. Fluorescence has been obtained from a plastic fluorescent slide which has a linear response to the excitation power range used in this experiment (0–80 μW).

Fig. 3
Fig. 3

Comparison of gCW-STED imaging obtained with the fast-gated SPAD module and the TCPSC-based time-gating. Pexc = 40 μW, PSTED = 100 mW ( I STED m = 50 MWcm 2) and ΔT = 7 ns. Scale bars 1 μm.

Fig. 4
Fig. 4

Gated CW-STED imaging of fluorescent beads using the fast-gated SPAD module. (a) Conventional CW-STED imaging obtained using the fast-gated SPAD in the free-running modality. (b) Gated CW-STED image. The lower-right corner show the confocal recording. (c) Magnified views of the marked areas, renormalized in signal intensity. (d) Intensity profiles along the arrows marked in the gated CW-STED image. Pexc = 10 μW, PSTED = 50 mW ( I STED m = 25 MWcm 2), Tg = 2 ns and ΔT = 7 ns. Scale bars 1μm.

Fig. 5
Fig. 5

Gated CW-STED imaging of a microtubuline network using the fast-gated SPAD module. (a) Conventional CW-STED imaging obtained using the fast-gated SPAD in the free-running modality. (b) Gated CW-STED image. The lower-right corner show the confocal recording. (c) Magnified views of the marked areas, renormalized in signal intensity. (d) Intensity profiles along the arrows marked in the gated CW-STED image. Pexc = 10 μW, PSTED = 50 mW ( I STED m = 25 MWcm 2, Tg = 2 ns and ΔT = 7 ns. Scale bars 1μm.

Metrics