Abstract

We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT

Jesung Park, Jeffrey T. Cheng, Daniel Ferguson, Gopi Maguluri, Ernest W. Chang, Caitlin Clancy, Daniel J. Lee, and Nicusor Iftimia
Biomed. Opt. Express 7(2) 238-250 (2016)

In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope

Nam Hyun Cho, Jeong Hun Jang, Woonggyu Jung, and Jeehyun Kim
Opt. Express 22(8) 8985-8995 (2014)

Light field otoscope design for 3D in vivo imaging of the middle ear

Noah Bedard, Timothy Shope, Alejandro Hoberman, Mary Ann Haralam, Nader Shaikh, Jelena Kovačević, Nikhil Balram, and Ivana Tošić
Biomed. Opt. Express 8(1) 260-272 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Reoser, M. Valente, and H. Dosford-Dunn, Audiology Diagnosis (Thieme, 2000).
  2. S. A. Gelfand, Essentials of Audiology (Thieme Medical Publishers, Inc., 2009),.
  3. C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
    [Crossref] [PubMed]
  4. Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
    [PubMed]
  5. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
    [Crossref] [PubMed]
  6. C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
    [Crossref] [PubMed]
  7. C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
    [Crossref] [PubMed]
  8. B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
    [Crossref] [PubMed]
  9. J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
    [Crossref] [PubMed]
  10. S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
    [Crossref] [PubMed]
  11. S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).
  12. H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
    [Crossref] [PubMed]
  13. B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
    [Crossref] [PubMed]
  14. S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
    [Crossref] [PubMed]
  15. J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
    [Crossref] [PubMed]
  16. S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express 19(16), 15415–15428 (2011).
    [Crossref] [PubMed]
  17. L. Wu and H. Xie, “A millimeter-tunable-range microlens for endoscopic biomedical imaging applications,” IEEE JQ Elect. 46(9), 1237–1244 (2010).
    [Crossref]
  18. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
    [Crossref]
  19. N. Weber, H. Zappe, and A. Seifert, “Optical micro-system with highly flexible tunability for endoscopic micro-probes,” IEEE Proc. of International Conference on Optical MEMS and Nanophotonics, 51–52 (2011).
    [Crossref]
  20. K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” IEEE J.Micromechanical Systems 20(6), 1462–1472 (2011).
    [Crossref]
  21. S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15(24), 15854–15862 (2007).
    [Crossref] [PubMed]
  22. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
    [Crossref] [PubMed]
  23. B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
    [Crossref]
  24. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  25. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
    [Crossref] [PubMed]
  26. J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
    [Crossref] [PubMed]
  27. H. Heffner and B. Masterton, “Hearing in glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat,” J. Acoust. Soc. Am. 68(6), 1584 (1980).
    [Crossref]
  28. H. E. Heffner and R. S. Heffner, “Hearing ranges of laboratory animals,” J. Am. Assoc. Lab. Anim. Sci. 46(1), 20–22 (2007).
    [PubMed]
  29. G. Ehret, “Development of absolute auditory thresholds in the house mouse (Mus musculus),” J. Am. Audiol. Soc. 1(5), 179–184 (1976).
    [PubMed]
  30. Q. Y. Zheng, K. R. Johnson, and L. C. Erway, “Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses,” Hear. Res. 130(1-2), 94–107 (1999).
    [Crossref] [PubMed]

2015 (1)

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

2014 (2)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
[Crossref] [PubMed]

2013 (2)

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

2012 (3)

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (4)

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref] [PubMed]

L. Wu and H. Xie, “A millimeter-tunable-range microlens for endoscopic biomedical imaging applications,” IEEE JQ Elect. 46(9), 1237–1244 (2010).
[Crossref]

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

2008 (2)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[Crossref] [PubMed]

2007 (2)

H. E. Heffner and R. S. Heffner, “Hearing ranges of laboratory animals,” J. Am. Assoc. Lab. Anim. Sci. 46(1), 20–22 (2007).
[PubMed]

S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15(24), 15854–15862 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

2001 (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

2000 (2)

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

1999 (1)

Q. Y. Zheng, K. R. Johnson, and L. C. Erway, “Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses,” Hear. Res. 130(1-2), 94–107 (1999).
[Crossref] [PubMed]

1980 (1)

H. Heffner and B. Masterton, “Hearing in glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat,” J. Acoust. Soc. Am. 68(6), 1584 (1980).
[Crossref]

1976 (1)

G. Ehret, “Development of absolute auditory thresholds in the house mouse (Mus musculus),” J. Am. Audiol. Soc. 1(5), 179–184 (1976).
[PubMed]

Aljasem, K.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” IEEE J.Micromechanical Systems 20(6), 1462–1472 (2011).
[Crossref]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Allen, J. B.

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

Applegate, B. E.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
[Crossref] [PubMed]

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express 19(16), 15415–15428 (2011).
[Crossref] [PubMed]

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref] [PubMed]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Boppart, S. A.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref] [PubMed]

Brandon, J. L.

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

Brenner, M.

Brezinski, M. E.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Carajal, E.

S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).

Carbajal, E. F.

Chaney, E. J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref] [PubMed]

Chen, X.

Chen, Z.

Choudhury, N.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

de Boer, J. F.

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Ehret, G.

G. Ehret, “Development of absolute auditory thresholds in the house mouse (Mus musculus),” J. Am. Audiol. Soc. 1(5), 179–184 (1976).
[PubMed]

Erway, L. C.

Q. Y. Zheng, K. R. Johnson, and L. C. Erway, “Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses,” Hear. Res. 130(1-2), 94–107 (1999).
[Crossref] [PubMed]

Froehly, L.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” IEEE J.Micromechanical Systems 20(6), 1462–1472 (2011).
[Crossref]

Fujimoto, J. G.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Gao, S. S.

Gimenez-Conti, I. B.

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

Groves, A. K.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Guo, S.

Heffner, H.

H. Heffner and B. Masterton, “Hearing in glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat,” J. Acoust. Soc. Am. 68(6), 1584 (1980).
[Crossref]

Heffner, H. E.

H. E. Heffner and R. S. Heffner, “Hearing ranges of laboratory animals,” J. Am. Assoc. Lab. Anim. Sci. 46(1), 20–22 (2007).
[PubMed]

Heffner, R. S.

H. E. Heffner and R. S. Heffner, “Hearing ranges of laboratory animals,” J. Am. Assoc. Lab. Anim. Sci. 46(1), 20–22 (2007).
[PubMed]

Hendriks, B. H.

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Hubler, Z.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

Jacques, S. L.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Jafri, M. S.

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[Crossref] [PubMed]

Jo, J. A.

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref] [PubMed]

Johnson, K. R.

Q. Y. Zheng, K. R. Johnson, and L. C. Erway, “Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses,” Hear. Res. 130(1-2), 94–107 (1999).
[Crossref] [PubMed]

Jung, W.

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kim, J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kuiper, S.

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Lee, K. S.

Lin, J.

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[Crossref] [PubMed]

Masterton, B.

H. Heffner and B. Masterton, “Hearing in glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat,” J. Acoust. Soc. Am. 68(6), 1584 (1980).
[Crossref]

Moayedi, Y.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Monroy, G. L.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

Mukai, D.

Murali, S.

Nelson, J. S.

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Nguyen, C. T.

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref] [PubMed]

Nguyen-Huynh, A.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Nolan, R. M.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

Novak, M.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Novak, M. A.

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

Nuttall, A. L.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Oghalai, J. S.

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
[Crossref] [PubMed]

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express 19(16), 15415–15428 (2011).
[Crossref] [PubMed]

Pande, P.

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref] [PubMed]

Park, B. H.

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Park, J.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Pitris, C.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Raphael, P.

S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).

Raphael, P. D.

Renders, C. A.

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Robinson, S. R.

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

Rolland, J. P.

Saunders, K. T.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Seifert, A.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” IEEE J.Micromechanical Systems 20(6), 1462–1472 (2011).
[Crossref]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Shelton, R. L.

Shemonski, N. D.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

Shrestha, S.

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref] [PubMed]

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

Staecker, H.

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[Crossref] [PubMed]

Stewart, C. N.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref] [PubMed]

Subhash, H. M.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Tu, H.

Tukker, T. W.

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

van As, M. A. J.

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Wan, Q.

Wang, R.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Wang, R. K.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Werber, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Wong, B. J.

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Wu, L.

L. Wu and H. Xie, “A millimeter-tunable-range microlens for endoscopic biomedical imaging applications,” IEEE JQ Elect. 46(9), 1237–1244 (2010).
[Crossref]

Xia, A.

Xie, H.

L. Wu and H. Xie, “A millimeter-tunable-range microlens for endoscopic biomedical imaging applications,” IEEE JQ Elect. 46(9), 1237–1244 (2010).
[Crossref]

Xie, T.

Yuan, T.

Zappe, H.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” IEEE J.Micromechanical Systems 20(6), 1462–1472 (2011).
[Crossref]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Zheng, Q. Y.

Q. Y. Zheng, K. R. Johnson, and L. C. Erway, “Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses,” Hear. Res. 130(1-2), 94–107 (1999).
[Crossref] [PubMed]

Zuo, J.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Ann. Otol. Rhinol. Laryngol. (1)

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[Crossref] [PubMed]

Arch. Otolaryngol. Head Neck Surg. (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Hear. Res. (2)

C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, and J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013).
[Crossref] [PubMed]

Q. Y. Zheng, K. R. Johnson, and L. C. Erway, “Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses,” Hear. Res. 130(1-2), 94–107 (1999).
[Crossref] [PubMed]

IEEE J.Micromechanical Systems (1)

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” IEEE J.Micromechanical Systems 20(6), 1462–1472 (2011).
[Crossref]

IEEE JQ Elect. (1)

L. Wu and H. Xie, “A millimeter-tunable-range microlens for endoscopic biomedical imaging applications,” IEEE JQ Elect. 46(9), 1237–1244 (2010).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

J. A. Jo, B. E. Applegate, J. Park, S. Shrestha, P. Pande, I. B. Gimenez-Conti, and J. L. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57(10), 2596–2599 (2010).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

H. Heffner and B. Masterton, “Hearing in glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat,” J. Acoust. Soc. Am. 68(6), 1584 (1980).
[Crossref]

J. Am. Assoc. Lab. Anim. Sci. (1)

H. E. Heffner and R. S. Heffner, “Hearing ranges of laboratory animals,” J. Am. Assoc. Lab. Anim. Sci. 46(1), 20–22 (2007).
[PubMed]

J. Am. Audiol. Soc. (1)

G. Ehret, “Development of absolute auditory thresholds in the house mouse (Mus musculus),” J. Am. Audiol. Soc. 1(5), 179–184 (1976).
[PubMed]

J. Biomed. Opt. (2)

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

J. Neurophysiol. (1)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Rev. (1)

B. H. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

S. S. Gao, P. Raphael, A. Xia, J. Park, E. Carajal, B. E. Applegate, and J. S. Oghalai, “Methodology for assessment of structural vibrations by spectral domain optical coherence tomography,” Proc. SPIE 8207, 82072B(2012).

Quant. Imaging Med. Surg. (1)

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5(1), 69–77 (2015).
[PubMed]

Other (3)

R. J. Reoser, M. Valente, and H. Dosford-Dunn, Audiology Diagnosis (Thieme, 2000).

S. A. Gelfand, Essentials of Audiology (Thieme Medical Publishers, Inc., 2009),.

N. Weber, H. Zappe, and A. Seifert, “Optical micro-system with highly flexible tunability for endoscopic micro-probes,” IEEE Proc. of International Conference on Optical MEMS and Nanophotonics, 51–52 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Tunable miniature endoscope: isometric projection of a three-dimensional CAD model (a), components of the endoscope photographed before assembly (b), optical schematic of the tunable endoscope (c), photograph of the prototype with ruler in the foreground for scaling purposes (c).

Fig. 2
Fig. 2

Pseudo 3D opto-mechanical schematic of a system used to test optical performance of the miniature tunable endoscope.

Fig. 3
Fig. 3

Images of 1951 USAF resolution target acquired using experimental system schematically depicted in Fig. 2. From the top left, images are recoded at: 0 mm (a), 0.3 mm b) 0.8 mm (c) and 2.3 mm (d) endoscope working distance, measured between distal end of the GRIN lens and front, chromium coated, surface of the 1951 USAF resolution target. During experiment images were recorded at arbitrary selected resolution of 1944x2592 (height to width ratio of 0.76) and their brightness was adjusted for visualization purposes.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup. SLED – super luminescent diode, PoC – polarization controller, PC – laptop PC, RM – reference mirror.

Fig. 5
Fig. 5

Performance of the tunable needle like endoscope system in OCT set-up in function of probe working distance: resolution in lp/mm (a) and diameter of the field of view in mm (b).

Fig. 6
Fig. 6

Phase of the OCT signal in function of frequency of the audio stimulus at 50 SPL, latex membrane (a) and ear drum of the normal mouse (b).

Fig. 7
Fig. 7

2D isometric projection of OCT volumetric data onto xy plane with plane of the best focus at the incudo-stapedial joint (a) and at the stapedial artery (b). (c) and (d) B-scans through direction A-A from subplots (a) and (b) respectively. (e) and (f) B-scans through direction B-B from subplots (a) and (b) respectively. Please note that position of miniature tunable endoscope was fixed during this experiment.

Metrics