Abstract

We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 μW and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 μm and 8.1 μm, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography

Ki Hean Kim, B. Hyle Park, Gopi N. Maguluri, Tom W. Lee, Fran J. Rogomentich, Mirela G. Bancu, Brett E. Bouma, Johannes F. de Boer, and Jonathan J. Bernstein
Opt. Express 15(26) 18130-18140 (2007)

In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe

Peter H. Tran, David S. Mukai, Matthew Brenner, and Zhongping Chen
Opt. Lett. 29(11) 1236-1238 (2004)

High speed miniature motorized endoscopic probe for optical frequency domain imaging

Jianan Li, Mattijs de Groot, Frank Helderman, Jianhua Mo, Johannes M. A. Daniels, Katrien Grünberg, Tom G. Sutedja, and Johannes F. de Boer
Opt. Express 20(22) 24132-24138 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
  2. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref] [PubMed]
  3. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
    [Crossref] [PubMed]
  4. T. H. Tsai, J. G. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4(2), 57–93 (2014).
    [Crossref]
  5. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
    [Crossref] [PubMed]
  6. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett. 36(19), 3894–3896 (2011).
    [Crossref] [PubMed]
  7. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
    [Crossref] [PubMed]
  8. J. Li, M. de Groot, F. Helderman, J. Mo, J. M. Daniels, K. Grünberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express 20(22), 24132–24138 (2012).
    [PubMed]
  9. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. van Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38(10), 1715–1717 (2013).
    [Crossref] [PubMed]
  10. J. Su, J. Zhang, L. Yu, and Z. Chen, “In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography,” Opt. Express 15(16), 10390–10396 (2007).
    [Crossref] [PubMed]
  11. D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
    [Crossref] [PubMed]
  12. T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
    [Crossref] [PubMed]
  13. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
    [Crossref] [PubMed]
  14. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [Crossref] [PubMed]
  15. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  16. R. Hilzinger and W. Rodewald, Magnetic Materials: Fundamentals, Products, Properties, Applications (Publicis Publishing, Erlangen, 2013).
  17. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  18. C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
    [Crossref]
  19. S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
    [Crossref] [PubMed]
  20. M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
    [Crossref]

2014 (2)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

T. H. Tsai, J. G. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4(2), 57–93 (2014).
[Crossref]

2013 (3)

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. van Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38(10), 1715–1717 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2007 (1)

2006 (2)

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

2004 (3)

2003 (1)

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

2001 (1)

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

1996 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

1987 (1)

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

Aguirre, A. D.

Beurskens, R.

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Cai, B.

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Chen, T.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Cobb, M. J.

Conry, M.

Daniels, J. M.

de Boer, J. F.

de Groot, M.

Ding, G.

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

Dong, S.

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Duan, C.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Duker, J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Fu, L.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

T. H. Tsai, J. G. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4(2), 57–93 (2014).
[Crossref]

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
[Crossref] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Fujimura, S.

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

Gong, Z.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Goodnow, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Grünberg, K.

Gu, C.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Helderman, F.

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Herz, P. R.

Hirosawa, S.

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Huber, R.

Huo, T.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Jia, H.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Kimmey, M. B.

Kirk, R. W.

Ko, T.

Kowalczyk, A.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Lancee, C. T.

Lee, K. H.

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Li, J.

Li, X.

Lim, L. C.

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

Lim, S. P.

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Liu, X.

Lorenser, D.

Ma, J. S.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Madden, K.

Mashimo, H.

T. H. Tsai, J. G. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4(2), 57–93 (2014).
[Crossref]

Matsuura, Y.

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

McLaughlin, R. A.

Mo, J.

Petersen, C.

Pfeiffer, T.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Quirk, B. C.

Sagawa, M.

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

Sampson, D. D.

Samuelson, S.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Schmitt, J.

Schneider, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Southern, J. F.

Springeling, G.

Srinivasan, V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Su, J.

Sutedja, T. G.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Tearney, G. J.

Tsai, T. H.

T. H. Tsai, J. G. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4(2), 57–93 (2014).
[Crossref]

Uchino, K.

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

van der Steen, A. F.

van Soest, G.

Wang, C.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Wang, D.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Wang, F.

Wang, T.

Wang, X.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Weissman, N. J.

Wieser, W.

Wojtkowski, M.

Wu, J.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Xie, H.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Xue, P.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Yamamoto, H.

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

Yang, C.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

Yu, L.

Zhang, C.

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

Zhang, J.

J. Su, J. Zhang, L. Yu, and Z. Chen, “In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography,” Opt. Express 15(16), 10390–10396 (2007).
[Crossref] [PubMed]

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

Zhang, N.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Zhao, X.

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

Zheng, J. G.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Zhou, T.

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

Diagnostics (1)

T. H. Tsai, J. G. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4(2), 57–93 (2014).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 361–367 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

T. Chen, N. Zhang, T. Huo, C. Wang, J. G. Zheng, T. Zhou, and P. Xue, “Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor,” J. Biomed. Opt. 18(8), 086011 (2013).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

C. Yang, X. Zhao, G. Ding, C. Zhang, and B. Cai, “An axial flux electromagnetic micromotor,” J. Micromech. Microeng. 11(2), 113–117 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, “Nd-Fe-B permanent magnet materials,” Jpn. J. Appl. Phys. 26(6), 785–800 (1987).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Other (2)

R. Hilzinger and W. Rodewald, Magnetic Materials: Fundamentals, Products, Properties, Applications (Publicis Publishing, Erlangen, 2013).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A photograph of the prototype MDS probe comparing to a ruler and a coin. The outer diameter of the probe is 1.4 mm; (b) enlarged view of the probe tip; (c) The schematic of distal end of the MDS probe.
Fig. 2
Fig. 2 A schematic of the OCT system integrated with the probe.
Fig. 3
Fig. 3 The schematic of the interaction between the two external magnets and the two rotor magnets.
Fig. 4
Fig. 4 OCT images of ex vivo sample of a pigeon. (a) The image of the trachea. M: mucosal stroma. C: cartilage. E: respiratory epithelium. (b) The image of the aorta. I: tunica initia. M: tunica media. A: tunica adventia. (c) Uncorrected image of (b), where the deviation of the scanning axis can be observed.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B 1 = B 2 = μ 0 MV 2π z 3
B=2 μ 0 MV 2π z 3 cos θ 2 = μ 0 MV π z 3 cos θ 2
N max = μ 0 M 2 V V r π z 3 cos θ 2
N max = μ 0 M 2 V V r π a ( D 2 + a 2 ) 2

Metrics