Abstract

Achieving excellent timing resolution in gamma ray detectors is crucial in several applications such as medical imaging with time-of-flight positron emission tomography (TOF-PET). Although many factors impact the overall system timing resolution, the statistical nature of scintillation light, including photon production and transport in the crystal to the photodetector, is typically the limiting factor for modern scintillation detectors. In this study, we investigated the impact of surface treatment, in particular, roughening select areas of otherwise polished crystals, on light transport and timing resolution. A custom Monte Carlo photon tracking tool was used to gain insight into changes in light collection and timing resolution that were observed experimentally: select roughening configurations increased the light collection up to 25% and improved timing resolution by 15% compared to crystals with all polished surfaces. Simulations showed that partial surface roughening caused a greater number of photons to be reflected towards the photodetector and increased the initial rate of photoelectron production. This study provides a simple method to improve timing resolution and light collection in scintillator-based gamma ray detectors, a topic of high importance in the field of TOF-PET. Additionally, we demonstrated utility of our Monte Carlo simulation tool to accurately predict the effect of altering crystal surfaces on light collection and timing resolution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Shape based Monte Carlo code for light transport in complex heterogeneous tissues

Eduardo Margallo-Balbás and Patrick J. French
Opt. Express 15(21) 14086-14098 (2007)

Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography

Ivan T. Lima, Anshul Kalra, and Sherif S. Sherif
Biomed. Opt. Express 2(5) 1069-1081 (2011)

A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media

Adam K. Glaser, Stephen C. Kanick, Rongxiao Zhang, Pedro Arce, and Brian W. Pogue
Biomed. Opt. Express 4(5) 741-759 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
    [Crossref] [PubMed]
  2. T. K. Lewellen, “Time-of-flight PET,” Semin. Nucl. Med. 28(3), 268–275 (1998).
    [Crossref] [PubMed]
  3. W. W. Moses, “Time-of-flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003).
    [Crossref]
  4. E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).
  5. M. Conti, “Focus on time-of-flight PET: the benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38(6), 1147–1157 (2011).
    [Crossref] [PubMed]
  6. T. K. Lewellen, “Recent developments in PET detector technology,” Phys. Med. Biol. 53(17), R287–R317 (2008).
    [Crossref] [PubMed]
  7. D. Renker, “New trends of photodetectors,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 1–6 (2007).
    [Crossref]
  8. M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
    [Crossref]
  9. P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
    [Crossref]
  10. S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
    [Crossref]
  11. P. Lecoq, E. Auffray, and A. Knapitsch, “How photonic crystals can improve the timing resolution of scintillators,” IEEE Trans. Nucl. Sci. 60(3), 1653–1657 (2013).
    [Crossref]
  12. C. Degenhardt, G. Prescher, T. Frach, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier – a novel sensor for the detection of scintillation light,” IEEE NSS-MIC Conference Record, N28–5 (2009).
  13. P. Lecoq, “New approaches to improve timing resolution in scintillators,” IEEE Trans. Nucl. Sci. 59(5), 2313–2318 (2012).
    [Crossref]
  14. V. Ch. Spanoudaki and C. S. Levin, “Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation,” Phys. Med. Biol. 56(3), 735–756 (2011).
    [Crossref] [PubMed]
  15. W. W. Moses and S. E. Derenzo, “Prospects for time-of-flight PET using LSO scintillator,” IEEE Trans. Nucl. Sci. 46(3), 474–478 (1999).
    [Crossref]
  16. S. E. Derenzo, W.-S. Choong, and W. W. Moses, “Fundamental limits of scintillation detector timing precision,” Phys. Med. Biol. 59(13), 3261–3286 (2014).
    [Crossref] [PubMed]
  17. L. G. Hyman, “Time resolution of photomultiplier systems,” Rev. Sci. Instrum. 36(2), 193–196 (1965).
    [Crossref]
  18. E. Roncali and S. R. Cherry, “Simulation of light transport in scintillators based on 3D characterization of crystal surfaces,” Phys. Med. Biol. 58(7), 2185–2198 (2013).
    [Crossref] [PubMed]
  19. E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
    [Crossref] [PubMed]
  20. S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
    [Crossref]
  21. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
    [Crossref]
  22. M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
    [Crossref]
  23. H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
    [Crossref]

2014 (3)

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

S. E. Derenzo, W.-S. Choong, and W. W. Moses, “Fundamental limits of scintillation detector timing precision,” Phys. Med. Biol. 59(13), 3261–3286 (2014).
[Crossref] [PubMed]

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

2013 (2)

P. Lecoq, E. Auffray, and A. Knapitsch, “How photonic crystals can improve the timing resolution of scintillators,” IEEE Trans. Nucl. Sci. 60(3), 1653–1657 (2013).
[Crossref]

E. Roncali and S. R. Cherry, “Simulation of light transport in scintillators based on 3D characterization of crystal surfaces,” Phys. Med. Biol. 58(7), 2185–2198 (2013).
[Crossref] [PubMed]

2012 (2)

P. Lecoq, “New approaches to improve timing resolution in scintillators,” IEEE Trans. Nucl. Sci. 59(5), 2313–2318 (2012).
[Crossref]

S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
[Crossref]

2011 (2)

V. Ch. Spanoudaki and C. S. Levin, “Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation,” Phys. Med. Biol. 56(3), 735–756 (2011).
[Crossref] [PubMed]

M. Conti, “Focus on time-of-flight PET: the benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38(6), 1147–1157 (2011).
[Crossref] [PubMed]

2010 (1)

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

2009 (1)

M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
[Crossref]

2008 (4)

T. K. Lewellen, “Recent developments in PET detector technology,” Phys. Med. Biol. 53(17), R287–R317 (2008).
[Crossref] [PubMed]

J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
[Crossref] [PubMed]

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[Crossref]

2007 (1)

D. Renker, “New trends of photodetectors,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 1–6 (2007).
[Crossref]

2004 (2)

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

2003 (1)

W. W. Moses, “Time-of-flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003).
[Crossref]

1999 (1)

W. W. Moses and S. E. Derenzo, “Prospects for time-of-flight PET using LSO scintillator,” IEEE Trans. Nucl. Sci. 46(3), 474–478 (1999).
[Crossref]

1998 (1)

T. K. Lewellen, “Time-of-flight PET,” Semin. Nucl. Med. 28(3), 268–275 (1998).
[Crossref] [PubMed]

1965 (1)

L. G. Hyman, “Time resolution of photomultiplier systems,” Rev. Sci. Instrum. 36(2), 193–196 (1965).
[Crossref]

Auffray, E.

P. Lecoq, E. Auffray, and A. Knapitsch, “How photonic crystals can improve the timing resolution of scintillators,” IEEE Trans. Nucl. Sci. 60(3), 1653–1657 (2013).
[Crossref]

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Bajard, M.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Berg, E.

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

Brunner, S.

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Brunner, S. E.

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

Casey, M.

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

Cherry, S. R.

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

E. Roncali and S. R. Cherry, “Simulation of light transport in scintillators based on 3D characterization of crystal surfaces,” Phys. Med. Biol. 58(7), 2185–2198 (2013).
[Crossref] [PubMed]

Chevallier, M.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Choong, W.-S.

S. E. Derenzo, W.-S. Choong, and W. W. Moses, “Fundamental limits of scintillation detector timing precision,” Phys. Med. Biol. 59(13), 3261–3286 (2014).
[Crossref] [PubMed]

Conti, M.

M. Conti, “Focus on time-of-flight PET: the benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38(6), 1147–1157 (2011).
[Crossref] [PubMed]

M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
[Crossref]

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

Dam, H. T.

S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
[Crossref]

Daube-Witherspoon, M. E.

J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
[Crossref] [PubMed]

Dauvergne, D.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Derenzo, S. E.

S. E. Derenzo, W.-S. Choong, and W. W. Moses, “Fundamental limits of scintillation detector timing precision,” Phys. Med. Biol. 59(13), 3261–3286 (2014).
[Crossref] [PubMed]

W. W. Moses and S. E. Derenzo, “Prospects for time-of-flight PET using LSO scintillator,” IEEE Trans. Nucl. Sci. 46(3), 474–478 (1999).
[Crossref]

Doshi, N.

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

Eriksson, L.

M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
[Crossref]

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

Fang, Q.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Freud, N.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Gruber, L.

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

Hillemanns, H.

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Hirtl, A.

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

Hyman, L. G.

L. G. Hyman, “Time resolution of photomultiplier systems,” Rev. Sci. Instrum. 36(2), 193–196 (1965).
[Crossref]

Janecek, M.

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[Crossref]

Jarron, P.

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Jo, J. A.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Karp, J. S.

J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
[Crossref] [PubMed]

Knapitsch, A.

P. Lecoq, E. Auffray, and A. Knapitsch, “How photonic crystals can improve the timing resolution of scintillators,” IEEE Trans. Nucl. Sci. 60(3), 1653–1657 (2013).
[Crossref]

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Le Foulher, F.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Lecoq, P.

P. Lecoq, E. Auffray, and A. Knapitsch, “How photonic crystals can improve the timing resolution of scintillators,” IEEE Trans. Nucl. Sci. 60(3), 1653–1657 (2013).
[Crossref]

P. Lecoq, “New approaches to improve timing resolution in scintillators,” IEEE Trans. Nucl. Sci. 59(5), 2313–2318 (2012).
[Crossref]

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Letang, J.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Levin, C. S.

V. Ch. Spanoudaki and C. S. Levin, “Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation,” Phys. Med. Biol. 56(3), 735–756 (2011).
[Crossref] [PubMed]

Lewellen, T. K.

T. K. Lewellen, “Recent developments in PET detector technology,” Phys. Med. Biol. 53(17), R287–R317 (2008).
[Crossref] [PubMed]

T. K. Lewellen, “Time-of-flight PET,” Semin. Nucl. Med. 28(3), 268–275 (1998).
[Crossref] [PubMed]

Marcu, L.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Marton, J.

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

Melcher, C. L.

M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
[Crossref]

Meyer, T.

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Moses, W. W.

S. E. Derenzo, W.-S. Choong, and W. W. Moses, “Fundamental limits of scintillation detector timing precision,” Phys. Med. Biol. 59(13), 3261–3286 (2014).
[Crossref] [PubMed]

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[Crossref]

W. W. Moses, “Time-of-flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003).
[Crossref]

W. W. Moses and S. E. Derenzo, “Prospects for time-of-flight PET using LSO scintillator,” IEEE Trans. Nucl. Sci. 46(3), 474–478 (1999).
[Crossref]

Muehllehner, G.

J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
[Crossref] [PubMed]

Papaioannou, T.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Poizat, J.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Powolny, F.

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

Ray, C.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Renker, D.

D. Renker, “New trends of photodetectors,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 1–6 (2007).
[Crossref]

Roncali, E.

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

E. Roncali and S. R. Cherry, “Simulation of light transport in scintillators based on 3D characterization of crystal surfaces,” Phys. Med. Biol. 58(7), 2185–2198 (2013).
[Crossref] [PubMed]

Rothfuss, H.

M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
[Crossref]

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

Schaart, D. R.

S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
[Crossref]

Schmall, J. P.

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

Schmand, M.

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

Seifert, S.

S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
[Crossref]

Shastry, K.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Spanoudaki, V. Ch.

V. Ch. Spanoudaki and C. S. Levin, “Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation,” Phys. Med. Biol. 56(3), 735–756 (2011).
[Crossref] [PubMed]

Steenbergen, J. H. L.

S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
[Crossref]

Surti, S.

J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
[Crossref] [PubMed]

Suzuki, K.

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

Testa, E.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Testa, M.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Vaitha, R.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Viswanath, V.

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

Eur. J. Nucl. Med. Mol. Imaging (1)

M. Conti, “Focus on time-of-flight PET: the benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38(6), 1147–1157 (2011).
[Crossref] [PubMed]

IEEE Trans. Nucl. Sci. (9)

P. Lecoq, “New approaches to improve timing resolution in scintillators,” IEEE Trans. Nucl. Sci. 59(5), 2313–2318 (2012).
[Crossref]

W. W. Moses and S. E. Derenzo, “Prospects for time-of-flight PET using LSO scintillator,” IEEE Trans. Nucl. Sci. 46(3), 474–478 (1999).
[Crossref]

W. W. Moses, “Time-of-flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003).
[Crossref]

M. Conti, L. Eriksson, H. Rothfuss, and C. L. Melcher, “Comparison of fast scintillators with TOF PET potential,” IEEE Trans. Nucl. Sci. 56(3), 926–933 (2009).
[Crossref]

P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors influencing time resolution of scintillators and ways to improve them,” IEEE Trans. Nucl. Sci. 57(5), 2411–2416 (2010).
[Crossref]

S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “Studies on the Cherenkov effect for improved timing resolution of TOF-PET,” IEEE Trans. Nucl. Sci. 61(1), 443–447 (2014).
[Crossref]

P. Lecoq, E. Auffray, and A. Knapitsch, “How photonic crystals can improve the timing resolution of scintillators,” IEEE Trans. Nucl. Sci. 60(3), 1653–1657 (2013).
[Crossref]

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[Crossref]

H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, and M. Schmand, “Monte Carlo simulation study of LSO crystals,” IEEE Trans. Nucl. Sci. 51(3), 770–774 (2004).
[Crossref]

J. Instrum. (1)

S. Seifert, J. H. L. Steenbergen, H. T. Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” J. Instrum. 7(9), P09004 (2012).
[Crossref]

J. Nucl. Med. (1)

J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: experimental and clinical results,” J. Nucl. Med. 49(3), 462–470 (2008).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

D. Renker, “New trends of photodetectors,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 1–6 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Letang, J. Poizat, C. Ray, and M. Testa, “Dose profiling monitoring with carbon ions by means of prompt-gamma measurements,” Nucl. Instrum. Methods Phys. Res. B 267(6), 993–996 (2008).

Phys. Med. Biol. (5)

S. E. Derenzo, W.-S. Choong, and W. W. Moses, “Fundamental limits of scintillation detector timing precision,” Phys. Med. Biol. 59(13), 3261–3286 (2014).
[Crossref] [PubMed]

E. Roncali and S. R. Cherry, “Simulation of light transport in scintillators based on 3D characterization of crystal surfaces,” Phys. Med. Biol. 58(7), 2185–2198 (2013).
[Crossref] [PubMed]

E. Roncali, J. P. Schmall, V. Viswanath, E. Berg, and S. R. Cherry, “Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation,” Phys. Med. Biol. 59(8), 2023–2039 (2014).
[Crossref] [PubMed]

V. Ch. Spanoudaki and C. S. Levin, “Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation,” Phys. Med. Biol. 56(3), 735–756 (2011).
[Crossref] [PubMed]

T. K. Lewellen, “Recent developments in PET detector technology,” Phys. Med. Biol. 53(17), R287–R317 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

L. G. Hyman, “Time resolution of photomultiplier systems,” Rev. Sci. Instrum. 36(2), 193–196 (1965).
[Crossref]

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnosis,” Rev. Sci. Instrum. 75(1), 151–162 (2004).
[Crossref]

Semin. Nucl. Med. (1)

T. K. Lewellen, “Time-of-flight PET,” Semin. Nucl. Med. 28(3), 268–275 (1998).
[Crossref] [PubMed]

Other (1)

C. Degenhardt, G. Prescher, T. Frach, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier – a novel sensor for the detection of scintillation light,” IEEE NSS-MIC Conference Record, N28–5 (2009).

Supplementary Material (4)

» Media 1: AVI (16991 KB)     
» Media 2: AVI (16477 KB)     
» Media 3: AVI (18876 KB)     
» Media 4: AVI (20922 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Surface roughening sections are indicated by red, polished surfaces by blue. a) Top surface roughened, b) – e) One side roughened 5 – 20 mm, f) Two sides roughened 10 mm, g) All lateral sides roughened 20 mm. The bottom surface of the crystal is coupled to the PMT.
Fig. 2
Fig. 2 a) AFM sample of polished surface. b) AFM sample of roughened surface. c) Computed reflectance curves for polished and roughened sections.
Fig. 3
Fig. 3 a) Schematic used for testing crystals. Drawing is not to scale. A light absorbing material (not shown) is placed around the crystals outside the reflector to secure the crystals to the PMT window. b) Experimental setup used to acquire detector data.
Fig. 4
Fig. 4 Processes involved in generating simulated scintillation pulses.
Fig. 5
Fig. 5 a) Experimental 511 keV energy spectrum with Gaussian fit of the photopeak to estimate light collection. b) Changes in photopeak position for roughened crystals relative to all polished surfaces. Error bars represent standard deviation of five measurements for experimental data and three measurements for simulated data.
Fig. 6
Fig. 6 a) Histogram of experimental timing data and Gaussian fit used to calculate the timing resolution. b) Changes in timing resolution with roughened surfaces relative to all polished surfaces. Error bars represent standard deviation of five measurements for experimental data and three measurements for simulated data. The green bars represent predicted changes in experimental timing resolution based on Eq. (1).
Fig. 7
Fig. 7 Spatial distribution of photons reflected off one lateral surface for a) polished (Media 1), b) top roughened (Media 2), c) one side roughened 5 mm (Media 3), and d) one side roughened 15 mm (Media 4). Photon directions (blue points) were projected on a unit sphere (yellow).
Fig. 8
Fig. 8 a) Angles of photons reflected off crystal faces (face in contact with PMT not included). Angles were computed with respect to the horizontal assuming the crystal was vertical. b) Fraction of emitted photons that were detected, escaped through the sides of the crystal, or were absorbed (bulk absorption with absorption length = 800 mm) varied with roughening.
Fig. 9
Fig. 9 a) Schematic representation of computing signals from single photon responses. For each photoelectron, a Gaussian pulse is generated (blue), and the sum of all Gaussian pulses forms the signal (red). With a 1 ns rise time, the sum of single photon responses quickly reaches the timing pick-off threshold (Th). b) Photoelectron production rate for 4 surface configurations, showing that the crystals with one side roughened 5 mm and 15 mm produced more photoelectrons around the pick-off time (~1.3 ns). c) Coincidence timing resolution for the 200 events used for photoelectron production rate analysis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CT R rough,pred =CT R pol N pol N rough

Metrics