Abstract

Laser speckle contrast imaging (LSCI) shows a great potential for monitoring blood flow, but the spatial resolution suffers from the scattering of tissue. Here, we demonstrate the capability of a combination method of LSCI and skin optical clearing to describe in detail the dynamic response of cutaneous vasculature to vasoactive noradrenaline injection. Moreover, the superior resolution, contrast and sensitivity make it possible to rebuild arteries-veins separation and quantitatively assess the blood flow dynamical changes in terms of flow velocity and vascular diameter at single artery or vein level.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity

Suzie Dufour, Yaaseen Atchia, Raanan Gad, Dene Ringuette, Iliya Sigal, and Ofer Levi
Biomed. Opt. Express 4(10) 1856-1875 (2013)

Cardiac pulsatility mapping and vessel type identification using laser speckle contrast imaging

Dmitry D. Postnov, Sefik Evren Erdener, Kivilcim Kilic, and David A. Boas
Biomed. Opt. Express 9(12) 6388-6397 (2018)

Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system

Jia Qin, Roberto Reif, Zhongwei Zhi, Suzan Dziennis, and Ruikang Wang
Biomed. Opt. Express 3(3) 455-466 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Holowatz, C. S. Thompson-Torgerson, and W. L. Kenney, “The human cutaneous circulation as a model of generalized microvascular function,” J. Appl. Physiol. 105(1), 370–372 (2008).
    [Crossref] [PubMed]
  2. H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
    [Crossref] [PubMed]
  3. F. Quondamatteo, “Skin and diabetes mellitus: what do we know?” Cell Tissue Res. 355(1), 1–21 (2014).
    [Crossref] [PubMed]
  4. M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
    [Crossref] [PubMed]
  5. G. J. Hodges and A. T. Del Pozzi, “Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation,” Microvasc. Res. 93, 87–91 (2014).
    [Crossref] [PubMed]
  6. J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
    [Crossref] [PubMed]
  7. G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
    [Crossref] [PubMed]
  8. R. K. Jain, L. L. Munn, and D. Fukumura, Transparent Window Models and Intravital Microscopy: Imaging Gene Expression, Physiological Function and Therapeutic Effects in Tumors, Tumor Model in Cancer research, 641–679, Humana Press (2011)
  9. S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
    [Crossref] [PubMed]
  10. Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett. 38(14), 2592–2595 (2013).
    [Crossref] [PubMed]
  11. Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
    [Crossref] [PubMed]
  12. M. W. Laschke, B. Vollmar, and M. D. Menger, “The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue,” Eur. Cell. Mater. 22, 147–167 (2011).
    [PubMed]
  13. H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
    [Crossref] [PubMed]
  14. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  15. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  16. M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation 19(1), 47–64 (2012).
    [Crossref] [PubMed]
  17. J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3(3), 455–466 (2012).
    [Crossref] [PubMed]
  18. G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
    [Crossref] [PubMed]
  19. J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
    [Crossref] [PubMed]
  20. M. Roustit and J. L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci. 34(7), 373–384 (2013).
    [Crossref] [PubMed]
  21. D. Ringuette, I. Sigal, R. Gad, and O. Levi, “Reducing misfocus-related motion artefacts in laser speckle contrast imaging,” Biomed. Opt. Express 6(1), 266–276 (2015).
    [Crossref] [PubMed]
  22. S. M. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5(7), 2157–2171 (2014).
    [Crossref] [PubMed]
  23. S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
    [Crossref] [PubMed]
  24. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
    [Crossref] [PubMed]
  25. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
    [Crossref] [PubMed]
  26. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. (SPIE Press, Bellingham, WA 2015) pp. 419–590.
  27. J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
    [Crossref]
  28. R. Samatham, K. G. Phillips, and S. L. Jacques, “Assessment of Optical Clearing Agents Using Reflectance-Mode Confocal Scanning Laser Microscopy,” J. Innov. Opt. Heal. Sci. 03(03), 183–188 (2010).
    [Crossref]
  29. Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
    [Crossref] [PubMed]
  30. R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13(7), 2337–2344 (2005).
    [Crossref] [PubMed]
  31. A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
    [Crossref] [PubMed]
  32. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
    [Crossref]
  33. B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
    [Crossref] [PubMed]
  34. Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
    [Crossref] [PubMed]
  35. Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
    [PubMed]
  36. J. W. Wilson, S. Degan, W. S. Warren, and M. C. Fischer, “Optical clearing of archive-compatible paraffin embedded tissue for multiphoton microscopy,” Biomed. Opt. Express 3(11), 2752–2760 (2012).
    [Crossref] [PubMed]
  37. J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).
  38. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
    [Crossref] [PubMed]
  39. J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
    [Crossref] [PubMed]
  40. D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
    [Crossref] [PubMed]
  41. J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).
  42. N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
    [Crossref] [PubMed]
  43. F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
    [Crossref] [PubMed]
  44. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
    [Crossref] [PubMed]
  45. Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
    [Crossref] [PubMed]
  46. A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
    [Crossref] [PubMed]
  47. H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
    [Crossref] [PubMed]
  48. I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
    [Crossref] [PubMed]
  49. I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
    [Crossref] [PubMed]
  50. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
    [Crossref] [PubMed]
  51. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
    [Crossref]
  52. P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
    [Crossref]
  53. N. Feng, J. Qiu, P. Li, X. Sun, C. Yin, W. Luo, S. Chen, and Q. Luo, “Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging,” Opt. Express 19(17), 15777–15791 (2011).
    [Crossref] [PubMed]
  54. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref] [PubMed]
  55. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [Crossref] [PubMed]
  56. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [Crossref] [PubMed]
  57. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
    [Crossref] [PubMed]
  58. K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
    [Crossref] [PubMed]
  59. J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)
  60. J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
    [Crossref]
  61. A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
    [Crossref] [PubMed]
  62. K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
    [Crossref] [PubMed]
  63. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. 661–710, SPIE Press, Bellingham, WA (2015)
  64. S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4(11), 824–826 (2007).
    [Crossref]
  65. M. Bonesi, S. Matcher, and I. Meglinski, “Doppler optical coherence tomography in cardiovascular applications,” Laser Phys. 20(6), 1491–1499 (2010).
    [Crossref]
  66. M. Bonesi, S. Proskurin, and I. Meglinski, “Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography,” Laser Phys. 20(4), 891–899 (2010).
    [Crossref]
  67. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
    [Crossref] [PubMed]
  68. M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
    [Crossref] [PubMed]
  69. S. Yousefi, Z. Zhi, and R. K. Wang, “Label-free optical imaging of lymphatic vessels within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800510 (2014).
    [Crossref] [PubMed]
  70. V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
    [Crossref]
  71. V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
    [Crossref] [PubMed]
  72. L. G. Whitby, J. Axelrod, and H. Weil-Malherbe, “The fate of H3-norepinephrine in animals,” J. Pharmacol. Exp. Ther. 132(2), 193–201 (1961).
    [PubMed]
  73. S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
    [Crossref] [PubMed]
  74. A. C. Sharma and A. Gulati, “Effect of diaspirin cross-linked hemoglobin and norepinephrine on systemic hemodynamics and regional circulation in rats,” J. Lab. Clin. Med. 123(2), 299–308 (1994).
    [PubMed]

2015 (1)

2014 (10)

S. M. S. Kazmi, S. Balial, and A. K. Dunn, “Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation,” Biomed. Opt. Express 5(7), 2157–2171 (2014).
[Crossref] [PubMed]

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

F. Quondamatteo, “Skin and diabetes mellitus: what do we know?” Cell Tissue Res. 355(1), 1–21 (2014).
[Crossref] [PubMed]

S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
[Crossref] [PubMed]

G. J. Hodges and A. T. Del Pozzi, “Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation,” Microvasc. Res. 93, 87–91 (2014).
[Crossref] [PubMed]

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Label-free optical imaging of lymphatic vessels within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800510 (2014).
[Crossref] [PubMed]

2013 (9)

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

M. Roustit and J. L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci. 34(7), 373–384 (2013).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett. 38(14), 2592–2595 (2013).
[Crossref] [PubMed]

Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

2012 (11)

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

J. W. Wilson, S. Degan, W. S. Warren, and M. C. Fischer, “Optical clearing of archive-compatible paraffin embedded tissue for multiphoton microscopy,” Biomed. Opt. Express 3(11), 2752–2760 (2012).
[Crossref] [PubMed]

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation 19(1), 47–64 (2012).
[Crossref] [PubMed]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3(3), 455–466 (2012).
[Crossref] [PubMed]

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

2011 (6)

A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
[Crossref] [PubMed]

N. Feng, J. Qiu, P. Li, X. Sun, C. Yin, W. Luo, S. Chen, and Q. Luo, “Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging,” Opt. Express 19(17), 15777–15791 (2011).
[Crossref] [PubMed]

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

M. W. Laschke, B. Vollmar, and M. D. Menger, “The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue,” Eur. Cell. Mater. 22, 147–167 (2011).
[PubMed]

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

2010 (10)

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[Crossref] [PubMed]

J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
[Crossref]

R. Samatham, K. G. Phillips, and S. L. Jacques, “Assessment of Optical Clearing Agents Using Reflectance-Mode Confocal Scanning Laser Microscopy,” J. Innov. Opt. Heal. Sci. 03(03), 183–188 (2010).
[Crossref]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

M. Bonesi, S. Matcher, and I. Meglinski, “Doppler optical coherence tomography in cardiovascular applications,” Laser Phys. 20(6), 1491–1499 (2010).
[Crossref]

M. Bonesi, S. Proskurin, and I. Meglinski, “Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography,” Laser Phys. 20(4), 891–899 (2010).
[Crossref]

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

2009 (4)

Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
[Crossref] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

2008 (3)

L. A. Holowatz, C. S. Thompson-Torgerson, and W. L. Kenney, “The human cutaneous circulation as a model of generalized microvascular function,” J. Appl. Physiol. 105(1), 370–372 (2008).
[Crossref] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[Crossref] [PubMed]

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[Crossref] [PubMed]

2007 (5)

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[Crossref] [PubMed]

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4(11), 824–826 (2007).
[Crossref]

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

2006 (2)

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[Crossref] [PubMed]

2005 (2)

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[Crossref] [PubMed]

R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13(7), 2337–2344 (2005).
[Crossref] [PubMed]

2004 (1)

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

2003 (1)

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

1997 (1)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

1994 (2)

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[Crossref] [PubMed]

A. C. Sharma and A. Gulati, “Effect of diaspirin cross-linked hemoglobin and norepinephrine on systemic hemodynamics and regional circulation in rats,” J. Lab. Clin. Med. 123(2), 299–308 (1994).
[PubMed]

1990 (1)

F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
[Crossref] [PubMed]

1961 (1)

L. G. Whitby, J. Axelrod, and H. Weil-Malherbe, “The fate of H3-norepinephrine in animals,” J. Pharmacol. Exp. Ther. 132(2), 193–201 (1961).
[PubMed]

Abraham, P.

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Addadi, Y.

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

All, A.

An, L.

Axelrod, J.

L. G. Whitby, J. Axelrod, and H. Weil-Malherbe, “The fate of H3-norepinephrine in animals,” J. Pharmacol. Exp. Ther. 132(2), 193–201 (1961).
[PubMed]

Balial, S.

Basak, K.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Bashkatov, A. N.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[Crossref] [PubMed]

Beach, J. M.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[Crossref] [PubMed]

Becker, K.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Bibikova, O. A.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

Bonesi, M.

M. Bonesi, S. Matcher, and I. Meglinski, “Doppler optical coherence tomography in cardiovascular applications,” Laser Phys. 20(6), 1491–1499 (2010).
[Crossref]

M. Bonesi, S. Proskurin, and I. Meglinski, “Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography,” Laser Phys. 20(4), 891–899 (2010).
[Crossref]

Boulaftali, Y.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Bouton, M. C.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Bradke, F.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Bricq, S.

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Bruneval, P.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Cai, L.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Cameron, N. E.

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[Crossref] [PubMed]

Camici, P. G.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Carpi, A.

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

Chapeau-Blondeau, F.

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Chen, C. K.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Chen, M.

J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
[Crossref]

Chen, S.

Chess, S.

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

Choi, B.

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

Choyke, P. L.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

Christ, F.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Cicchi, R.

Cotter, M. A.

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[Crossref] [PubMed]

Cowley, A. W.

F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
[Crossref] [PubMed]

Cracowski, C.

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

Cracowski, J. L.

M. Roustit and J. L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci. 34(7), 373–384 (2013).
[Crossref] [PubMed]

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation 19(1), 47–64 (2012).
[Crossref] [PubMed]

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

Degan, S.

Del Pozzi, A. T.

G. J. Hodges and A. T. Del Pozzi, “Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation,” Microvasc. Res. 93, 87–91 (2014).
[Crossref] [PubMed]

Deng, Y.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Deverman, B. E.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Dewhirst, M. W.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Ding, Y.

Dodt, H. U.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Draijer, M.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Du, C.

Dunn, A. K.

Durand, S.

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

Dutta, P. K.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Dziennis, S.

S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
[Crossref] [PubMed]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3(3), 455–466 (2012).
[Crossref] [PubMed]

Egen, J. G.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Ertürk, A.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Fan, Z.

Feng, N.

Fischer, M. C.

Fontanella, A. N.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Franzoni, F.

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

Fraser, C. L.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Gad, R.

Gaillard-Bigot, F.

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

Galanzha, E. I.

Galetta, F.

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

Genina, E. A.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[Crossref] [PubMed]

Ghosn, M. G.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Gong, H.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Gopal, A.

Gradinaru, V.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Greene, A. S.

F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
[Crossref] [PubMed]

Grinvald, A.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[Crossref] [PubMed]

Gulati, A.

A. C. Sharma and A. Gulati, “Effect of diaspirin cross-linked hemoglobin and norepinephrine on systemic hemodynamics and regional circulation in rats,” J. Lab. Clin. Med. 123(2), 299–308 (1994).
[PubMed]

Han, Z.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

Hanna, G.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Hansen-Smith, F.

F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
[Crossref] [PubMed]

Harmelin, A.

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

Hellal, F.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Henricson, J.

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

Henrion, D.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Hildesheim, R.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[Crossref] [PubMed]

Hinds, C. J.

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

Hodges, G. J.

G. J. Hodges and A. T. Del Pozzi, “Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation,” Microvasc. Res. 93, 87–91 (2014).
[Crossref] [PubMed]

Hojer, C. D.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Holowatz, L. A.

L. A. Holowatz, C. S. Thompson-Torgerson, and W. L. Kenney, “The human cutaneous circulation as a model of generalized microvascular function,” J. Appl. Physiol. 105(1), 370–372 (2008).
[Crossref] [PubMed]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Ho-Tin-Noé, B.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Hu, S.

Huang, Q.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

Humeau-Heurtier, A.

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Hyacinth, L.

A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
[Crossref] [PubMed]

Izquierdo-Román, A.

A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
[Crossref] [PubMed]

Jacques, S. L.

R. Samatham, K. G. Phillips, and S. L. Jacques, “Assessment of Optical Clearing Agents Using Reflectance-Mode Confocal Scanning Laser Microscopy,” J. Innov. Opt. Heal. Sci. 03(03), 183–188 (2010).
[Crossref]

Jährling, N.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Jandrot-Perrus, M.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Jhanji, S.

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

Jia, X.

Jiang, B.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Juratli, M. A.

Kalchenko, V.

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

Kazmi, S. M. S.

Kenney, W. L.

L. A. Holowatz, C. S. Thompson-Torgerson, and W. L. Kenney, “The human cutaneous circulation as a model of generalized microvascular function,” J. Appl. Physiol. 105(1), 370–372 (2008).
[Crossref] [PubMed]

Khan, M. H.

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

Khoobehi, B.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[Crossref] [PubMed]

Kon, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Kulkarni, R. P.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Kuznetsov, Y.

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

Lamrani, L.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Laschke, M. W.

M. W. Laschke, B. Vollmar, and M. D. Menger, “The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue,” Eur. Cell. Mater. 22, 147–167 (2011).
[PubMed]

Leftheriotis, G.

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

Levi, O.

Lévy, B. I.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Li, M.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

Li, N.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[Crossref] [PubMed]

Li, P.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

N. Feng, J. Qiu, P. Li, X. Sun, C. Yin, W. Luo, S. Chen, and Q. Luo, “Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging,” Opt. Express 19(17), 15777–15791 (2011).
[Crossref] [PubMed]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[Crossref] [PubMed]

Li, Y.

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

Liu, X.

J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
[Crossref]

Liu, Y.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

Lombard, J. H.

F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
[Crossref] [PubMed]

Loyau, S.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Lubeck, E.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Luo, Q.

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

N. Feng, J. Qiu, P. Li, X. Sun, C. Yin, W. Luo, S. Chen, and Q. Luo, “Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging,” Opt. Express 19(17), 15777–15791 (2011).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[Crossref] [PubMed]

Luo, W.

Luo, Z.

M Kelly, K.

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

Ma, N.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

Madar-Balakirski, N.

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

Mahé, G.

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Maksimova, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Manjunatha, M.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Mao, Z.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

Maslov, K.

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

Massi, D.

Matcher, S.

M. Bonesi, S. Matcher, and I. Meglinski, “Doppler optical coherence tomography in cardiovascular applications,” Laser Phys. 20(6), 1491–1499 (2010).
[Crossref]

Mauch, C. P.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Mavlyutov, A. H.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

McCullough, J.

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

McDonald, D. M.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

McLoughlin, N.

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[Crossref] [PubMed]

Meglinski, I.

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

M. Bonesi, S. Proskurin, and I. Meglinski, “Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography,” Laser Phys. 20(4), 891–899 (2010).
[Crossref]

M. Bonesi, S. Matcher, and I. Meglinski, “Doppler optical coherence tomography in cardiovascular applications,” Laser Phys. 20(6), 1491–1499 (2010).
[Crossref]

Meglinski, I. V.

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4(11), 824–826 (2007).
[Crossref]

Menger, M. D.

M. W. Laschke, B. Vollmar, and M. D. Menger, “The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue,” Eur. Cell. Mater. 22, 147–167 (2011).
[PubMed]

Menyaev, Y. A.

Miao, P.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

Millet, C.

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

Mishin, A. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Murari, K.

Narasimha-Iyer, H.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[Crossref] [PubMed]

Nedosekin, D. A.

Neeman, M.

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

Nelson, J. S.

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

Ni, S.

Nilsson, A.

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

Nilsson, G.

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

Palmer, G. M.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Pan, Y.

Parthasarathy, A. B.

Patel, N.

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

Pavlov, A. N.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

Pavlova, O. N.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

Pavone, F.

Pearse, R. M.

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

Phillips, K. G.

R. Samatham, K. G. Phillips, and S. L. Jacques, “Assessment of Optical Clearing Agents Using Reflectance-Mode Confocal Scanning Laser Microscopy,” J. Innov. Opt. Heal. Sci. 03(03), 183–188 (2010).
[Crossref]

Pries, A.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Proskurin, S.

M. Bonesi, S. Proskurin, and I. Meglinski, “Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography,” Laser Phys. 20(4), 891–899 (2010).
[Crossref]

Proskurin, S. G.

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4(11), 824–826 (2007).
[Crossref]

Qin, J.

S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
[Crossref] [PubMed]

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3(3), 455–466 (2012).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

Qiu, J.

Quondamatteo, F.

F. Quondamatteo, “Skin and diabetes mellitus: what do we know?” Cell Tissue Res. 355(1), 1–21 (2014).
[Crossref] [PubMed]

Rege, A.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[Crossref] [PubMed]

Reif, R.

Ringuette, D.

Rosei, A. E.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Rossi, M.

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

Rousseau, D.

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Roustit, M.

M. Roustit and J. L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci. 34(7), 373–384 (2013).
[Crossref] [PubMed]

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation 19(1), 47–64 (2012).
[Crossref] [PubMed]

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

Rouzaud, M. C.

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Roysam, B.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[Crossref] [PubMed]

Rylander, C. G.

A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
[Crossref] [PubMed]

Samatham, R.

R. Samatham, K. G. Phillips, and S. L. Jacques, “Assessment of Optical Clearing Agents Using Reflectance-Mode Confocal Scanning Laser Microscopy,” J. Innov. Opt. Heal. Sci. 03(03), 183–188 (2010).
[Crossref]

Sampson, D.

Santoro, G.

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

Sarimollaoglu, M.

Schiessl, I.

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[Crossref] [PubMed]

Semyachkina-Glushkovskaya, O. V.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

Senarathna, J.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)

Shah, S.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Shan, S.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Sharma, A. C.

A. C. Sharma and A. Gulati, “Effect of diaspirin cross-linked hemoglobin and norepinephrine on systemic hemodynamics and regional circulation in rats,” J. Lab. Clin. Med. 123(2), 299–308 (1994).
[PubMed]

Sheng, M.

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

Shi, L.

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

Shi, R.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

Sigal, I.

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

Sjöberg, F.

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

Steenbergen, W.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Stirling, S.

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

Struijker-Boudier, H. A.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Sun, X.

Tesselaar, E.

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

Thakor, N.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[Crossref] [PubMed]

Thakor, N. V.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)

Thompson-Torgerson, C. S.

L. A. Holowatz, C. S. Thompson-Torgerson, and W. L. Kenney, “The human cutaneous circulation as a model of generalized microvascular function,” J. Appl. Physiol. 105(1), 370–372 (2008).
[Crossref] [PubMed]

Tom, W. J.

Tong, S.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

Treweek, J. B.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Trunina, N. A.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Tuchin, V. V.

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[PubMed]

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[Crossref] [PubMed]

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

van Leeuwen, T.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Vanoverschelde, J. L.

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Vanzetta, I.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[Crossref] [PubMed]

Varela, J. R.

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

Vogt, W. C.

A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
[Crossref] [PubMed]

Vollmar, B.

M. W. Laschke, B. Vollmar, and M. D. Menger, “The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue,” Eur. Cell. Mater. 22, 147–167 (2011).
[PubMed]

Wang, H.

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Wang, J.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
[Crossref] [PubMed]

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
[Crossref]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Wang, L. V.

Wang, R.

Wang, R. K.

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
[Crossref] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Label-free optical imaging of lymphatic vessels within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800510 (2014).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

Wang, W.

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[Crossref] [PubMed]

Warren, W. S.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Wei, D.

Wei, X.

Weil-Malherbe, H.

L. G. Whitby, J. Axelrod, and H. Weil-Malherbe, “The fate of H3-norepinephrine in animals,” J. Pharmacol. Exp. Ther. 132(2), 193–201 (1961).
[PubMed]

Wen, X.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Whitby, L. G.

L. G. Whitby, J. Axelrod, and H. Weil-Malherbe, “The fate of H3-norepinephrine in animals,” J. Pharmacol. Exp. Ther. 132(2), 193–201 (1961).
[PubMed]

Wilson, J. W.

Xu, G.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Xu, T.

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

Yang, B.

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Yang, X.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

Yao, J.

Yin, C.

Yousefi, S.

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
[Crossref] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Label-free optical imaging of lymphatic vessels within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800510 (2014).
[Crossref] [PubMed]

Yu, T.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

Yuan, Z.

Zeng, S.

Zhang, G.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

Zhang, L.

Zhang, X.

Zhang, Y.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

Zharov, V. P.

Zhi, Z.

S. Yousefi, Z. Zhi, and R. K. Wang, “Label-free optical imaging of lymphatic vessels within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800510 (2014).
[Crossref] [PubMed]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3(3), 455–466 (2012).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Zhou, Y.

Zhu, D.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
[Crossref]

Zhu, Y.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

Zimnyakov, D. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Ziv, K.

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

Biomed. Opt. Express (6)

Biomed. Pharmacother. (1)

M. Rossi, A. Carpi, F. Galetta, F. Franzoni, and G. Santoro, “The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother. 60(8), 437–442 (2006).
[Crossref] [PubMed]

Cell (1)

B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C. K. Chen, E. Lubeck, S. Shah, L. Cai, and V. Gradinaru, “Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing,” Cell 158(4), 945–958 (2014).
[Crossref] [PubMed]

Cell Tissue Res. (1)

F. Quondamatteo, “Skin and diabetes mellitus: what do we know?” Cell Tissue Res. 355(1), 1–21 (2014).
[Crossref] [PubMed]

Circ Cardiovasc Imaging (1)

G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abraham, “Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging,” Circ Cardiovasc Imaging 5(1), 155–163 (2012).
[Crossref] [PubMed]

Crit. Care Med. (1)

S. Jhanji, S. Stirling, N. Patel, C. J. Hinds, and R. M. Pearse, “The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock,” Crit. Care Med. 37(6), 1961–1966 (2009).
[Crossref] [PubMed]

Diabetes Metab. Rev. (1)

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[Crossref] [PubMed]

Eur. Cell. Mater. (1)

M. W. Laschke, B. Vollmar, and M. D. Menger, “The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue,” Eur. Cell. Mater. 22, 147–167 (2011).
[PubMed]

Eur. Heart J. (1)

H. A. Struijker-Boudier, A. E. Rosei, P. Bruneval, P. G. Camici, F. Christ, D. Henrion, B. I. Lévy, A. Pries, and J. L. Vanoverschelde, “Evaluation of the microcirculation in hypertension and cardiovascular disease,” Eur. Heart J. 28(23), 2834–2840 (2007).
[Crossref] [PubMed]

Expert Rev. Med. Devices (1)

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[Crossref] [PubMed]

Hypertension (1)

F. Hansen-Smith, A. S. Greene, A. W. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6), 922–928 (1990).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (4)

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6801112 (2014).

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugars Induced Skin Optical Clearing From Molecular Dynamics Simulation to Experimental Demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7101007 (2014).

S. Yousefi, Z. Zhi, and R. K. Wang, “Label-free optical imaging of lymphatic vessels within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800510 (2014).
[Crossref] [PubMed]

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

IEEE Rev. Biomed. Eng. (1)

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013)

IEEE Trans. Biomed. Eng. (1)

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

L. A. Holowatz, C. S. Thompson-Torgerson, and W. L. Kenney, “The human cutaneous circulation as a model of generalized microvascular function,” J. Appl. Physiol. 105(1), 370–372 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (7)

S. Yousefi, J. Qin, S. Dziennis, and R. K. Wang, “Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography,” J. Biomed. Opt. 19(7), 076015 (2014).
[Crossref] [PubMed]

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, “Label free in vivo laser speckle imaging of blood and lymph vessels,” J. Biomed. Opt. 17(5), 050502 (2012).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

J. Biophotonics (1)

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics 3(1-2), 44–52 (2010).
[Crossref] [PubMed]

J. Innov. Opt. Heal. Sci. (3)

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting of cerebral arteries and veins: from large to small,” J. Innov. Opt. Heal. Sci. 3(1), 61–67 (2010).
[Crossref]

J. Wang, D. Zhu, M. Chen, and X. Liu, “Assessment of Optical Clearing Induced Improvement of Laser Speckle Contrast Imaging,” J. Innov. Opt. Heal. Sci. 03(03), 159–167 (2010).
[Crossref]

R. Samatham, K. G. Phillips, and S. L. Jacques, “Assessment of Optical Clearing Agents Using Reflectance-Mode Confocal Scanning Laser Microscopy,” J. Innov. Opt. Heal. Sci. 03(03), 183–188 (2010).
[Crossref]

J. Lab. Clin. Med. (1)

A. C. Sharma and A. Gulati, “Effect of diaspirin cross-linked hemoglobin and norepinephrine on systemic hemodynamics and regional circulation in rats,” J. Lab. Clin. Med. 123(2), 299–308 (1994).
[PubMed]

J. Neurosci. (1)

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[Crossref] [PubMed]

J. Pharmacol. Exp. Ther. (1)

L. G. Whitby, J. Axelrod, and H. Weil-Malherbe, “The fate of H3-norepinephrine in animals,” J. Pharmacol. Exp. Ther. 132(2), 193–201 (1961).
[PubMed]

Laser Photon. Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Laser Phys. (2)

M. Bonesi, S. Matcher, and I. Meglinski, “Doppler optical coherence tomography in cardiovascular applications,” Laser Phys. 20(6), 1491–1499 (2010).
[Crossref]

M. Bonesi, S. Proskurin, and I. Meglinski, “Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography,” Laser Phys. 20(4), 891–899 (2010).
[Crossref]

Laser Phys. Lett. (3)

V. Kalchenko, K. Ziv, Y. Addadi, N. Madar-Balakirski, I. Meglinski, M. Neeman, and A. Harmelin, “Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology,” Laser Phys. Lett. 7(8), 603–606 (2010).
[Crossref]

J. Wang, Y. Zhang, T. Xu, Q. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9(6), 469–473 (2012).
[Crossref]

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4(11), 824–826 (2007).
[Crossref]

Lasers Med. Sci. (1)

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[Crossref] [PubMed]

A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med. 43(8), 814–823 (2011).
[Crossref] [PubMed]

H. Wang, L. Shi, J. Qin, S. Yousefi, Y. Li, and R. K. Wang, “Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing,” Lasers Surg. Med. 46(6), 470–478 (2014).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (2)

S. Bricq, G. Mahé, D. Rousseau, A. Humeau-Heurtier, F. Chapeau-Blondeau, J. R. Varela, and P. Abraham, “Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis,” Med. Biol. Eng. Comput. 50(10), 1017–1023 (2012).
[Crossref] [PubMed]

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Microcirculation (1)

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation 19(1), 47–64 (2012).
[Crossref] [PubMed]

Microvasc. Res. (3)

J. L. Cracowski, F. Gaillard-Bigot, C. Cracowski, M. Roustit, and C. Millet, “Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity,” Microvasc. Res. 82(3), 333–338 (2011).
[Crossref] [PubMed]

G. J. Hodges and A. T. Del Pozzi, “Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation,” Microvasc. Res. 93, 87–91 (2014).
[Crossref] [PubMed]

J. Henricson, A. Nilsson, E. Tesselaar, G. Nilsson, and F. Sjöberg, “Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis,” Microvasc. Res. 78(2), 199–205 (2009).
[Crossref] [PubMed]

Nat. Med. (1)

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

Nat. Protoc. (2)

A. Ertürk, K. Becker, N. Jährling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).
[Crossref] [PubMed]

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Neuroimage (1)

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Physiol. Meas. (1)

A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, O. N. Pavlova, Q. Huang, D. Zhu, P. Li, V. V. Tuchin, and Q. Luo, “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas. 35(10), 1983–1999 (2014).
[Crossref] [PubMed]

Thromb. Haemost. (1)

Y. Boulaftali, L. Lamrani, M. C. Rouzaud, S. Loyau, M. Jandrot-Perrus, M. C. Bouton, and B. Ho-Tin-Noé, “The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy,” Thromb. Haemost. 107(5), 962–971 (2012).
[Crossref] [PubMed]

Trends Pharmacol. Sci. (1)

M. Roustit and J. L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci. 34(7), 373–384 (2013).
[Crossref] [PubMed]

Other (3)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. (SPIE Press, Bellingham, WA 2015) pp. 419–590.

R. K. Jain, L. L. Munn, and D. Fukumura, Transparent Window Models and Intravital Microscopy: Imaging Gene Expression, Physiological Function and Therapeutic Effects in Tumors, Tumor Model in Cancer research, 641–679, Humana Press (2011)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. 661–710, SPIE Press, Bellingham, WA (2015)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic of the LSCI system.
Fig. 2
Fig. 2 Monitoring cutaneous vasculature and blood flow at status of turbid skin; OCA-5 min; and 5-, 10-, 15-, 25-, 30-min after saline injection accompanied with OCA-treatment: white-light images (a); blood flow velocity maps (b); profiles of the flow velocity along the horizontal white line (c), respectively. Bar = 500 μm.
Fig. 3
Fig. 3 The steps of arteries-veins separation (a): speckle contrast image (step 1); vasculature network image (step 2), bright is the vasculature network and dark is non-vascular region; weighted temporal minimum intensity image (step 3); arteries-veins separation image (step 4). Saline injection-induced relative changes in vascular diameter and flow velocity in artery A (b, c); and vein V (d, e) during OCA- treatment. The injection time is set to be 0, which is consistent with the arrow shown in (b-e). Bar = 500 μm.
Fig. 4
Fig. 4 Monitoring cutaneous blood flow dynamics at status of turbid skin; OCA-5 min; and 5-, 10-, 15-, 25-, 30-min after NA injection accompanied with OCA-treatment: white-light images (a); blood flow velocity maps (b); profiles of the flow velocity along the horizontal white line (c), respectively. Bar = 500 μm.
Fig. 5
Fig. 5 Speckle contrast image (a); arteries-veins separation image (b); NA injection-induced relative changes in vascular diameter and flow velocity in artery A1 (c, d); vein V1 (e, f); and vein V2 (g, h) accompanied with OCA- treatment. The injection time is set to be 0, which is consistent with the arrow shown in (c-h). Bar = 500 μm.
Fig. 6
Fig. 6 Monitoring cutaneous blood flow dynamics before NA injection; and 5-, 10-, 15-, 25-, 30-min after NA injection through the turbid skin: white-light images (a); blood flow velocity maps (b); profiles of the flow velocity along the horizontal white line (c), respectively. Bar = 500 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C spec = σ s / I ,
C spec = σ s I = { τ c 2T [ 1exp( 2T / τ c ) ] } 1 2 ,
υ c =λ/ 2π τ c ,
CNR= | C back C vessel | f vessel σ vessel 2 + f back σ back 2 ,
SNR=Δ C sc / C sd ,

Metrics