Abstract

Shear wave speed is quantitatively related to tissue viscoelasticity. Previously we reported shear wave tracking at centimetre depths in a turbid optical medium using laser speckle contrast detection. Shear wave progression modulates displacement of optical scatterers and therefore modulates photon phase and changes the laser speckle patterns. Time-resolved charge-coupled device (CCD)-based speckle contrast analysis was used to track shear waves and measure the time-of-flight of shear waves for speed measurement. In this manuscript, we report a new observation of the laser speckle contrast difference signal for dual shear waves. A modulation of CCD speckle contrast difference was observed and simulation reproduces the modulation pattern, suggesting its origin. Both experimental and simulation results show that the dual shear wave approach generates an improved definition of temporal features in the time-of-flight optical signal and an improved signal to noise ratio with a standard deviation less than 50% that of individual shear waves. Results also show that dual shear waves can correct the bias of shear wave speed measurement caused by shear wave reflections from elastic boundaries.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence elastography – OCT at work in tissue biomechanics [Invited]

Kirill V. Larin and David D. Sampson
Biomed. Opt. Express 8(2) 1172-1202 (2017)

Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry

Yi Cheng, Sinan Li, Robert J. Eckersley, Daniel S. Elson, and Meng-Xing Tang
Biomed. Opt. Express 6(1) 63-71 (2015)

Tracking shear waves in turbid medium by light: theory, simulation, and experiment

Sinan Li, Yi Cheng, Lipei Song, Robert J. Eckersley, Daniel S. Elson, and Meng-Xing Tang
Opt. Lett. 39(6) 1597-1600 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
    [Crossref] [PubMed]
  2. Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review,” Clin. Anat. 23(5), 497–511 (2010).
    [Crossref] [PubMed]
  3. R. K. Wang, D. D. Sampson, S. A. Boppart, and B. F. Kennedy, “Special section guest editorial: optical elastography and measurement of tissue biomechanics,” J. Biomed. Opt. 18(12), 121501 (2013).
    [Crossref] [PubMed]
  4. B. F. Kennedy, R. A. Mclaughlin, H. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref] [PubMed]
  5. L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
    [Crossref] [PubMed]
  6. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896(2009).
    [Crossref] [PubMed]
  7. A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
    [Crossref] [PubMed]
  8. A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4(10), 2138–2149 (2013).
    [Crossref] [PubMed]
  9. W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
    [Crossref] [PubMed]
  10. T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
    [Crossref]
  11. C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express 5(5), 1403–1418 (2014).
    [Crossref] [PubMed]
  12. C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
    [Crossref]
  13. C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
    [Crossref]
  14. C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31(16), 2423–2425(2006).
    [Crossref] [PubMed]
  15. R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46(10), 1615–1623(2007).
    [Crossref] [PubMed]
  16. E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
    [Crossref]
  17. K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
    [Crossref]
  18. R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
    [Crossref] [PubMed]
  19. Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
    [Crossref] [PubMed]
  20. Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
    [Crossref] [PubMed]
  21. S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
    [Crossref] [PubMed]
  22. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
    [Crossref]
  23. L. Wang, S. L. Jacques, and L. Zheng, “MCMLMonte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
    [Crossref]
  24. R. Zemp, S. Sakadi, and L. V. Wang, “Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography,” Phys. Rev. E. 73(6), 061920 (2006).
    [Crossref]
  25. A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science 284(5418), 1337–1340 (1999).
    [Crossref] [PubMed]
  26. J. Ritsema, H. J. v. Heijst, and J. H. Woodhouse, “Complex shear wave velocity structure imaged beneath Africa and Iceland,” Science 286(5446), 1925–1928 (1999).
    [Crossref] [PubMed]

2015 (1)

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

2014 (7)

B. F. Kennedy, R. A. Mclaughlin, H. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref] [PubMed]

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express 5(5), 1403–1418 (2014).
[Crossref] [PubMed]

C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
[Crossref]

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4(10), 2138–2149 (2013).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

R. K. Wang, D. D. Sampson, S. A. Boppart, and B. F. Kennedy, “Special section guest editorial: optical elastography and measurement of tissue biomechanics,” J. Biomed. Opt. 18(12), 121501 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

2011 (1)

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

2010 (1)

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review,” Clin. Anat. 23(5), 497–511 (2010).
[Crossref] [PubMed]

2009 (2)

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896(2009).
[Crossref] [PubMed]

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

2007 (2)

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46(10), 1615–1623(2007).
[Crossref] [PubMed]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

2006 (2)

C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31(16), 2423–2425(2006).
[Crossref] [PubMed]

R. Zemp, S. Sakadi, and L. V. Wang, “Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography,” Phys. Rev. E. 73(6), 061920 (2006).
[Crossref]

2004 (1)

J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
[Crossref] [PubMed]

1999 (2)

A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science 284(5418), 1337–1340 (1999).
[Crossref] [PubMed]

J. Ritsema, H. J. v. Heijst, and J. H. Woodhouse, “Complex shear wave velocity structure imaged beneath Africa and Iceland,” Science 286(5446), 1925–1928 (1999).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCMLMonte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

1991 (1)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

Ahmad, A.

Arnal, B.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

Bauer, M.

Bercoff, J.

J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
[Crossref] [PubMed]

Boccara, A. C.

Boccara, A.-C.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Boppart, S. A.

Bossy, E.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Chen, Z.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Cheng, Y.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Chin, L.

Coker, D.

A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science 284(5418), 1337–1340 (1999).
[Crossref] [PubMed]

Curatolo, A.

Daoudi, K.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Doyle, B. J.

Dunsby, C.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

Eckersley, R.

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

Eckersley, R. J.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Ehman, R. L.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review,” Clin. Anat. 23(5), 497–511 (2010).
[Crossref] [PubMed]

Elson, D. S.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

Fink, M.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
[Crossref] [PubMed]

Funke, A. R.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Glaser, K. J.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review,” Clin. Anat. 23(5), 497–511 (2010).
[Crossref] [PubMed]

Guan, G.

Heijst, H. J. v.

J. Ritsema, H. J. v. Heijst, and J. H. Woodhouse, “Complex shear wave velocity structure imaged beneath Africa and Iceland,” Science 286(5446), 1925–1928 (1999).
[Crossref] [PubMed]

Hsu, Y. T.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

Huang, J. T. J.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

Huang, Z.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
[Crossref]

C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express 5(5), 1403–1418 (2014).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

Insana, M. F.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCMLMonte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Kennedy, B. F.

Kennedy, H. M.

Kim, C.

Kim, J.

KirkShung, K.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Lang, S.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

Latham, B. B.

Li, C.

Li, J.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Li, R.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

Li, S.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Liang, X.

Ling, Y.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

Ma, T.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Mariappan, Y. K.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review,” Clin. Anat. 23(5), 497–511 (2010).
[Crossref] [PubMed]

Mclaughlin, R. A.

Moes, C. J. M.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

Muller, M.

J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
[Crossref] [PubMed]

Munro, P. R. T.

Nabi, G.

Nahas, A.

Nguyen, T. M.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

ODonnell, M.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

Orescanin, M.

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

Qi, W.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Ritsema, J.

J. Ritsema, H. J. v. Heijst, and J. H. Woodhouse, “Complex shear wave velocity structure imaged beneath Africa and Iceland,” Science 286(5446), 1925–1928 (1999).
[Crossref] [PubMed]

Rosakis, A. J.

A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science 284(5418), 1337–1340 (1999).
[Crossref] [PubMed]

Roux, S.

Sakadi, S.

R. Zemp, S. Sakadi, and L. V. Wang, “Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography,” Phys. Rev. E. 73(6), 061920 (2006).
[Crossref]

Sampson, D. D.

Samudrala, O.

A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science 284(5418), 1337–1340 (1999).
[Crossref] [PubMed]

Saunders, C. M.

Shemonski, N. D.

Sobh, N. A.

Song, L.

Song, S.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
[Crossref]

Tang, M.-X.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

Tanter, M.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
[Crossref] [PubMed]

Tien, A.

Toohey, K. S.

van Gemert, M. J. C.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

van Marie, J.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

van Staveren, H. J.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCMLMonte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Wang, L. V.

Wang, R. K.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
[Crossref]

C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express 5(5), 1403–1418 (2014).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

R. K. Wang, D. D. Sampson, S. A. Boppart, and B. F. Kennedy, “Special section guest editorial: optical elastography and measurement of tissue biomechanics,” J. Biomed. Opt. 18(12), 121501 (2013).
[Crossref] [PubMed]

Woodhouse, J. H.

J. Ritsema, H. J. v. Heijst, and J. H. Woodhouse, “Complex shear wave velocity structure imaged beneath Africa and Iceland,” Science 286(5446), 1925–1928 (1999).
[Crossref] [PubMed]

Zemp, R.

R. Zemp, S. Sakadi, and L. V. Wang, “Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography,” Phys. Rev. E. 73(6), 061920 (2006).
[Crossref]

Zemp, R. J.

Zhang, F.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCMLMonte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Zhou, Q.

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Optics. (1)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Optics. 30(31), 4507–4514 (1991).
[Crossref]

Appl. Phys. Lett. (3)

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

W. Qi, R. Li, T. Ma, J. Li, K. KirkShung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4(10), 2138–2149 (2013).
[Crossref] [PubMed]

B. F. Kennedy, R. A. Mclaughlin, H. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref] [PubMed]

C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express 5(5), 1403–1418 (2014).
[Crossref] [PubMed]

C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
[Crossref]

Cancer. Lett. (1)

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer. Lett. 357(1), 121–128 (2015).
[Crossref]

Clin. Anat. (1)

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review,” Clin. Anat. 23(5), 497–511 (2010).
[Crossref] [PubMed]

Comput. Meth. Prog. Bio. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCMLMonte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. (1)

J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 51(11), 1523–1536 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

Y. Cheng, S. Li, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Viscosity measurement based on shear-wave laser speckle contrast analysis,” J. Biomed. Opt. 18(12), 121511 (2013).
[Crossref] [PubMed]

R. K. Wang, D. D. Sampson, S. A. Boppart, and B. F. Kennedy, “Special section guest editorial: optical elastography and measurement of tissue biomechanics,” J. Biomed. Opt. 18(12), 121501 (2013).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. ODonnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2014).
[Crossref]

Opt. Express. (1)

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express. 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. E. (1)

R. Zemp, S. Sakadi, and L. V. Wang, “Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography,” Phys. Rev. E. 73(6), 061920 (2006).
[Crossref]

Science (2)

A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science 284(5418), 1337–1340 (1999).
[Crossref] [PubMed]

J. Ritsema, H. J. v. Heijst, and J. H. Woodhouse, “Complex shear wave velocity structure imaged beneath Africa and Iceland,” Science 286(5446), 1925–1928 (1999).
[Crossref] [PubMed]

Ultrasound. Med. Biol (1)

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound. Med. Biol 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental set-up and the schematic path length (a) and time-of-flight (b) of shear waves. Green shows the simulated optical detection volume in cross-section (a) and longitudinal plane (b) of the phantom. In the Monte Carlo simulation, a 532 nm point-like laser beam was used as the light source.
Fig. 2
Fig. 2 ΔC(t) induced by the single shear wave (S) and the dual shear wave (D).
Fig. 3
Fig. 3 Simulated ΔC(t) induced by single (S) and dual (D) shear wave with (+R) and without consideration of shear wave reflections.
Fig. 4
Fig. 4 Simulation of the normalised temporal derivative for single (a-c) and dual (d-f) shear wave displacement.
Fig. 5
Fig. 5 Shift of peak time in ΔC(t) for single (S) and dual (D) shear waves in the experiment.
Fig. 6
Fig. 6 Shear wave speed measured on 0.8% (a), 1.0% (b), 1.2% (c) and 0.8%–1.2% stiff inclusion (d) agar phantom. The dash lines indicate the inclusion boundaries.
Fig. 7
Fig. 7 Peak times of single (S) and dual (D) shear wave induced ΔC(t) at various inclusion phantom scan positions.

Metrics